Maurice Denis-Papin
Übungsaufgaben zur Informationstheorie (eBook, PDF)
Lehrbuch f. Informatiker, Mathematiker u. alle Naturwissenschaftler ab 3. Semester.
-26%11
33,26 €
44,99 €**
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
17 °P sammeln
-26%11
33,26 €
44,99 €**
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
17 °P sammeln
Als Download kaufen
44,99 €****
-26%11
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
17 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
44,99 €****
-26%11
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
17 °P sammeln
Maurice Denis-Papin
Übungsaufgaben zur Informationstheorie (eBook, PDF)
Lehrbuch f. Informatiker, Mathematiker u. alle Naturwissenschaftler ab 3. Semester.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.63MB
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 200
- Erscheinungstermin: 2. Juli 2013
- Deutsch
- ISBN-13: 9783322863522
- Artikelnr.: 53095029
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Zahlensysteme und Kombinatorik.- 1.1. Zahlensysteme.- 1.2. Kombinatorik.- 2. Wahrscheinlichkeitsrechnung.- 2.1. Allgemeines.- 2.2. Bedingte Wahrscheinlichkeiten.- 2.3. Der Satz von Bayes.- 2.4. Zufallsvariable.- 3. Statistik.- 3.1. Grundbegriffe.- 3.2. Graphische Darstellungen.- 3.3. Charakteristische Parameter einer Häufigkeitsverteilung.- 3.4. Gesetz der Statistik.- 4. Informationstheorie.- 4.1. Definitionen.- 4.2. Abzählung der verschiedenen möglichen Nachrichten.- 4.3. Die Entropie.- 4.4. Codierung und Übertragung der Information.- 5. Fehler erkennende und Fehler korrigierende Codes.- 5.1. Allgemeines über Codierung.- 5.2. Lineare Codes.- 5.3. Zyklische binäre Codes.- 5.4. Verkettete Codes.- 1. Zerlegung von a und b in Primfaktoren.- 3. Mögliche Werte von n.- 4. Spezialfall.- 5. Beispiele.- Anhang 2: Codierung numerischer Informationen - Die wichtigsten Codes.- 1. Änderung der Basis und Codierung.- 2. Binärcodierung einer Dezimalzahl.- 3. Die wichtigsten binären Codes.- 3.1. Codes mit Gewichten.- 3.1.1. Reiner Binärcode.- 3.1.2. Neuner-Komplement.- 3.1.3. Code mit den Gewichten 2, 4, 2, 1..- 3.1.4. Code mit den Gewichten 5, 4, 2,1..- 3.2. Codes ohne Gewichte.- 3.2.1. Drei-Exzeß-Code.- 3.2.2. Reflexiver Binärcode.- 3.2.3. Binärer Code, bei dem jede Folge wenigstens eine und höchstens zwei Einsen enthält.- 4. Fehler erkennende Codes oder redundante Codes.- 4.1. Der biquinäre Code.- 4.2. "Zwei aus Fünf"-Codes.- Anhang 3: Codes die besonderen Erfordernissen entsprechen.- 1. Ein Code, der es gestattet, einen einzelnen Fehler oder eine Vertauschung zweier Ziffern in einer Zahl mit der Basis b zu erkennen.- 1.1. Fehlererkennung und Fehlerkorrektur.- 1.1.1. Fehlererkennung.- 1.1.2. Korrektur eines Fehlers.- 1.1.3. Beispiele.- 1.2. Erkennung vonzwei Arten von Fehlern.- 1.2.1. Arten von Fehlern die erkannt werden.- 1.2.2. Erkennung von Fehlern und die Kontrollzahl.- 1.2.3. Darstellung der Kontrollzahl.- 1.2.4. Praktische Methode zur Berechnung der Kontrollzahl S.- 2. Codes, die es gestatten, Fehlergruppen zu korrigieren (Telegraphische Übertragung).- 2.1. Eigenschaften systematischer Codes.- 2.2. Korrektur der Fehlergruppen.- 2.4. Beispiel.- 3. Ein Code, der es gestattet, einen einfachen Fehler zu korrigieren, der nacheinander an derselben Stelle in den Teilen einer Nachricht auftritt.- 3.1. Restklassen modulo p.- 3.2. Fehlererkennung und -korrektur.- 3.3. Beispiele.- Anhang 4: Vektoren und Matrizen - Der n-dimensionale Vektorraum.- 1. Struktur des Vektorraumes.- 2. Unterräume.- 3. Lineare Unabhängigkeit von Unterräumen.- 4. Die Basis eines Vektorraumes.- 5. Rang einer Menge von p Vektoren in einem Unterraum F von E.- 6. Matrizen, die ein Vektorsystem darstellen.- 7. Kanonische Form einer (m, n)-Matrix.- 8. Matrizenoperationen zur Reduktion einer regulären Matrix auf ihre kanonische Form.- 9. Orthogonale Unterräume.- 10. Charakteristische Gleichung einer Matrix.- Anhang 5: Auszüge aus Tafeln.- Tafel 1. Binominalverteilung.- Tafel 1.1. Binominalkoeffizienten C(math) für n= 2 bis 15.- Tafel 1.2. Wahrscheinlichkeitsverteilung.- Tafel 2. Poisson-Verteilung.- Tafel 3. Normalverteilung.- Tafel 3.1. Wahrscheinlichkeitsdichte S(u).- Tafel 3.2. Verteilungsfunktion ø(u).- Tafel 3.3. Irrtumswahrscheinlichkeiten.- Tafel 4. Logarithmen mit der Basis 2.- Schrifttumsverzeichnis.- Statistische Tafeln.- Zusätzliche Literatur.
1. Zahlensysteme und Kombinatorik.- 1.1. Zahlensysteme.- 1.2. Kombinatorik.- 2. Wahrscheinlichkeitsrechnung.- 2.1. Allgemeines.- 2.2. Bedingte Wahrscheinlichkeiten.- 2.3. Der Satz von Bayes.- 2.4. Zufallsvariable.- 3. Statistik.- 3.1. Grundbegriffe.- 3.2. Graphische Darstellungen.- 3.3. Charakteristische Parameter einer Häufigkeitsverteilung.- 3.4. Gesetz der Statistik.- 4. Informationstheorie.- 4.1. Definitionen.- 4.2. Abzählung der verschiedenen möglichen Nachrichten.- 4.3. Die Entropie.- 4.4. Codierung und Übertragung der Information.- 5. Fehler erkennende und Fehler korrigierende Codes.- 5.1. Allgemeines über Codierung.- 5.2. Lineare Codes.- 5.3. Zyklische binäre Codes.- 5.4. Verkettete Codes.- 1. Zerlegung von a und b in Primfaktoren.- 3. Mögliche Werte von n.- 4. Spezialfall.- 5. Beispiele.- Anhang 2: Codierung numerischer Informationen - Die wichtigsten Codes.- 1. Änderung der Basis und Codierung.- 2. Binärcodierung einer Dezimalzahl.- 3. Die wichtigsten binären Codes.- 3.1. Codes mit Gewichten.- 3.1.1. Reiner Binärcode.- 3.1.2. Neuner-Komplement.- 3.1.3. Code mit den Gewichten 2, 4, 2, 1..- 3.1.4. Code mit den Gewichten 5, 4, 2,1..- 3.2. Codes ohne Gewichte.- 3.2.1. Drei-Exzeß-Code.- 3.2.2. Reflexiver Binärcode.- 3.2.3. Binärer Code, bei dem jede Folge wenigstens eine und höchstens zwei Einsen enthält.- 4. Fehler erkennende Codes oder redundante Codes.- 4.1. Der biquinäre Code.- 4.2. "Zwei aus Fünf"-Codes.- Anhang 3: Codes die besonderen Erfordernissen entsprechen.- 1. Ein Code, der es gestattet, einen einzelnen Fehler oder eine Vertauschung zweier Ziffern in einer Zahl mit der Basis b zu erkennen.- 1.1. Fehlererkennung und Fehlerkorrektur.- 1.1.1. Fehlererkennung.- 1.1.2. Korrektur eines Fehlers.- 1.1.3. Beispiele.- 1.2. Erkennung vonzwei Arten von Fehlern.- 1.2.1. Arten von Fehlern die erkannt werden.- 1.2.2. Erkennung von Fehlern und die Kontrollzahl.- 1.2.3. Darstellung der Kontrollzahl.- 1.2.4. Praktische Methode zur Berechnung der Kontrollzahl S.- 2. Codes, die es gestatten, Fehlergruppen zu korrigieren (Telegraphische Übertragung).- 2.1. Eigenschaften systematischer Codes.- 2.2. Korrektur der Fehlergruppen.- 2.4. Beispiel.- 3. Ein Code, der es gestattet, einen einfachen Fehler zu korrigieren, der nacheinander an derselben Stelle in den Teilen einer Nachricht auftritt.- 3.1. Restklassen modulo p.- 3.2. Fehlererkennung und -korrektur.- 3.3. Beispiele.- Anhang 4: Vektoren und Matrizen - Der n-dimensionale Vektorraum.- 1. Struktur des Vektorraumes.- 2. Unterräume.- 3. Lineare Unabhängigkeit von Unterräumen.- 4. Die Basis eines Vektorraumes.- 5. Rang einer Menge von p Vektoren in einem Unterraum F von E.- 6. Matrizen, die ein Vektorsystem darstellen.- 7. Kanonische Form einer (m, n)-Matrix.- 8. Matrizenoperationen zur Reduktion einer regulären Matrix auf ihre kanonische Form.- 9. Orthogonale Unterräume.- 10. Charakteristische Gleichung einer Matrix.- Anhang 5: Auszüge aus Tafeln.- Tafel 1. Binominalverteilung.- Tafel 1.1. Binominalkoeffizienten C(math) für n= 2 bis 15.- Tafel 1.2. Wahrscheinlichkeitsverteilung.- Tafel 2. Poisson-Verteilung.- Tafel 3. Normalverteilung.- Tafel 3.1. Wahrscheinlichkeitsdichte S(u).- Tafel 3.2. Verteilungsfunktion ø(u).- Tafel 3.3. Irrtumswahrscheinlichkeiten.- Tafel 4. Logarithmen mit der Basis 2.- Schrifttumsverzeichnis.- Statistische Tafeln.- Zusätzliche Literatur.