73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. Such radios have unique challenges compared to longer-range, higher-powered systems. As a result, many different applications are covered, ranging from body-area networks to transcutaneous implant communications and Internet-of-Things devices. A mix of introductory and cutting-edge design techniques and architectures which facilitate each of these applications are discussed in detail. Specifically, this book covers:

Produktbeschreibung
This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. Such radios have unique challenges compared to longer-range, higher-powered systems. As a result, many different applications are covered, ranging from body-area networks to transcutaneous implant communications and Internet-of-Things devices. A mix of introductory and cutting-edge design techniques and architectures which facilitate each of these applications are discussed in detail. Specifically, this book covers:


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Patrick P. Mercier is an Assistant Professor at the University of California, San Diego (UCSD) in the department of Electrical and Computer Engineering. His research interests include the design of energy-efficient microsystems, focusing on the design of RF circuits, power converters and sensor interfaces for mobile electronics and biomedical applications. Prior to joining UCSD, he completed his Ph.D. degree in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT) with a doctoral thesis on the topic of communication and energy-delivery architectures for personal medical devices. Prof. Mercier has received numerous awards include the IEEE International Solid-State Circuits Conference (ISSCC) Jack Kilby Award for Outstanding Student Paper, the Hellman Foundation Award, a Graduate Teaching Award, an Intel Ph.D. Fellowship, a Natural Sciences and Engineering Council of Canada (NSERC) Julie Payette and Post Graduate fellowships, amongst others. He has over 50 publications and invited presentations at venues such as ISSCC, IEEE Journal of Solid-State Circuits, and Nature Biotechnology. Prof. Mercier currently serves as the Associate Director of the Center for Wearable Sensors at UCSD and as an Associated Editor for the IEEE Journal of Biomedical Circuits and Systems. Anantha P. Chandrakasan is the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering at the Massachusetts Institute of Technology, Cambridge. He is the Head of the MIT EECS Department. He has received several awards including the 2009 Semiconductor Industry Association (SIA) University Researcher Award and the 2013 IEEE Donald O. Pederson Award in Solid-State Circuits. His research interests include micro-power digital and mixed-signal integrated circuit design, wireless microsensor system design, portable multimedia devices, energy efficient radios and emerging technologies. He has served as the Conference Chair for the IEEE International Solid-State Circuits Conference (ISSCC) since 2010.