266,95 €
266,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
133 °P sammeln
266,95 €
266,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
133 °P sammeln
Als Download kaufen
266,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
133 °P sammeln
Jetzt verschenken
266,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
133 °P sammeln
  • Format: PDF

This book addresses the phenomenon of biological autoluminescence (also known as ultraweak photon emission, UPE, biochemiluminescence, or biophotons) and deals with a very broad spectrum of subjects, ranging from basic observational studies to molecular mechanisms, free-radical processes, physics of electron excitation and photon emission, as well as detection techniques. The chapter topics include UPE in plants, animals, and the human body; microorganisms and subcellular structures; and model systems, illustrating its high prevalence. Several sections of the book provide some backstory, with…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 37.22MB
Produktbeschreibung
This book addresses the phenomenon of biological autoluminescence (also known as ultraweak photon emission, UPE, biochemiluminescence, or biophotons) and deals with a very broad spectrum of subjects, ranging from basic observational studies to molecular mechanisms, free-radical processes, physics of electron excitation and photon emission, as well as detection techniques. The chapter topics include UPE in plants, animals, and the human body; microorganisms and subcellular structures; and model systems, illustrating its high prevalence. Several sections of the book provide some backstory, with emphasis on methodology, unresolved questions, and existing controversies. The authors raise and discuss complex, potentially divisive aspects: Are there any reasons to assume the existence of non-chemical interaction in biological systems? Can research results in the field of mitogenetic radiation, delayed luminescence, and oxychemiluminescence of model systems, be correctly interpreted? Whatdoes the future hold for this area of research? Altogether, this publication gives the reader a thorough overview of biological autoluminescence (UPE, biophotonics) research, making it ideal for students and researchers who are new to the area as well as those who are specializing in it.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ilya Volodyaev is a senior researcher at the Embryology Department, Faculty of Biology, Moscow State University, Russia. He earned his Master's degree in biophysics (2004) and PhD in embryology (2007) at Moscow State University and continued research in embryo development biophysics, combining it with clinical work. The current book relates to his interests in the field of biophysical research: biological autoluminescence, free radical processes and the hypothesis of non-chemical biological interactions. Eduard van Wijk is senior scientist and co-founder of MeLuNa Research, Wageningen, The Netherlands. He did his PhD at the Institute for Cognition and Information, Radboud University Nijmegen. Following completion of this degree he was affiliated as senior researcher at the International Institute of Biophysics and later at the Leiden University. His research is on the application of biophotonics in predicting organism quality both in human and agricultural issues. Michal Cifra is a senior scientist and Bioelectrodynamics research team leader at the Institute of Photonics and Electronics of the Czech Academy of Sciences. With his team, he explores the interactions between electromagnetic field and biosystems, which includes also generation of electromagnetic field by biosystems. Yury A. Vladimirov is Professor of Moscow State University, Academician of the Russian Academy of Medical Sciences (since 1988), and Russian Academy of Sciences (since 2013). In 1959 he discovered biochemiluminescence from animal tissues and became an originator of ultraweak photon emission research in the present sense. He investigated lipid peroxidation mechanisms and kinetics, its role in pathological conditions and triggering apoptosis. Acad. Vladimirov has founded departments of medical biophysics in Russian National Research Medical University (1966) and Moscow State University (1992) and is frequently referred to as the founder of medical biophysics in Russia.