Alle Infos zum eBook verschenken
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The continued advancement of MEMS (micro-electro-mechanical systems) complexity, performance, commercial exploitation and market size requires an ever-expanding graduate population with state-of-the-art expertise. Understanding MEMS: Principles and Applications provides a comprehensive introduction to this complex and multidisciplinary technology that is accessible to senior undergraduate and graduate students from a range of engineering and physical sciences backgrounds. Fully self-contained, this textbook is designed to help students grasp the key principles and operation of MEMS devices and…mehr
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.77MB
- Seiichi AritomeNAND Flash Memory Technologies (eBook, ePUB)122,99 €
- Hideaki TsuchiyaCarrier Transport in Nanoscale MOS Transistors (eBook, ePUB)111,99 €
- Ki Bang LeePrinciples of Microelectromechanical Systems (eBook, ePUB)154,99 €
- Future Trends in Microelectronics (eBook, ePUB)118,99 €
- Anand AsundiDigital Holography for MEMS and Microsystem Metrology (eBook, ePUB)107,99 €
- Nano and Micromachining (eBook, ePUB)139,99 €
- C. T. PanDesign and Fabrication of Self-Powered Micro-Harvesters (eBook, ePUB)123,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 6. Oktober 2015
- Englisch
- ISBN-13: 9781119055495
- Artikelnr.: 43979262
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 6. Oktober 2015
- Englisch
- ISBN-13: 9781119055495
- Artikelnr.: 43979262
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
11,
12 and
16 for unit axes X
[110], Y
[
110] and Z
[001] 72 4.5.2 Analytical Expressions for Some Rotated Piezoresistive Components 74 4.6 Two-dimensional Piezoresistors 74 4.6.1 Example: Accelerometer with Cantilever and Piezoresistive Sensing 76 4.7 Pressure Sensing with Rectangular Membranes 79 4.7.1 Example: Single-resistor Pressure Sensor 82 4.7.2 Example: Pressure Sensors Comparison 85 4.8 Piezoelectricity 86 4.8.1 Relevant Data for Some Piezoelectric Materials 88 4.8.2 Example: Piezoelectric Generator 89 Problems 91 5 Electrostatic Driving and Sensing 93 5.1 Energy and Co-energy 93 5.2 Voltage Drive 97 5.3 Pull-in Voltage 97 5.3.1 Example: Forces in a Parallel-plate Actuator 99 5.4 Electrostatic Pressure 101 5.5 Contact Resistance in Parallel-plate Switches 101 5.6 Hold-down Voltage 101 5.6.1 Example: Calculation of Hold-down Voltage 102 5.7 Dynamic Response of Pull-in-based Actuators 102 5.7.1 Example: Switching Transient 103 5.8 Charge Drive 105 5.9 Extending the Stable Range 105 5.10 Lateral Electrostatic Force 106 5.11 Comb Actuators 106 5.12 Capacitive Accelerometer 108 5.13 Differential Capacitive Sensing 108 5.14 Torsional Actuator 110 Problems 111 6 Resonators 115 6.1 Free Vibration: Lumped-element Model 115 6.2 Damped Vibration 116 6.3 Forced Vibration 117 6.3.1 Example: Vibration Amplitude as a Function of the Damping Factor 120 6.4 Small Signal Equivalent Circuit of Resonators 121 6.4.1 Example: Series and Parallel Resonances 125 6.4.2 Example: Spring Softening 125 6.5 Rayleigh-Ritz Method 126 6.5.1 Example: Vibration of a Cantilever 128 6.5.2 Example: Gravimetric Chemical Sensor 129 6.6 Resonant Gyroscope 130 6.7 Tuning Fork Gyroscope 133 6.7.1 Example: Calculation of Sensitivity in a Tuning Fork Gyroscope 134 Problems 135 7 Microfluidics and Electrokinetics 137 7.1 Viscous Flow 137 7.2 Flow in a Cylindrical Pipe 140 7.2.1 Example: Pressure Gradient Required to Sustain a Flow 141 7.3 Electrical Double Layer 142 7.3.1 Example: Debye Length and Surface Charge 144 7.4 Electro-osmotic Flow 144 7.5 Electrowetting 146 7.5.1 Example: Droplet Change by Electrowetting 148 7.5.2 Example: Full Substrate Contacts 149 7.6 Electrowetting Dynamics 151 7.6.1 Example: Contact-angle Dynamics 153 7.7 Dielectrophoresis 153 7.7.1 Electric Potential Created by a Constant Electric Field 154 7.7.2 Potential Created by an Electrical Dipole 155 7.7.3 Superposition 156 Problems 157 8 Thermal Devices 159 8.1 Steady-state Heat Equation 159 8.2 Thermal Resistance 161 8.2.1 Example: Temperature Profile in a Heated Wire 162 8.2.2 Example: Resistor Suspended in a Bridge 165 8.3 Platinum Resistors 166 8.4 Flow Measurement Based on Thermal Sensors 166 8.4.1 Example: Micromachined Flow Sensor 169 8.5 Dynamic Thermal Equivalent Circuit 171 8.6 Thermally Actuated Bimorph 172 8.6.1 Example: Bimorph Actuator 174 8.7 Thermocouples and Thermopiles 175 8.7.1 Example: IR Detector 175 Problems 176 9 Fabrication 181 9.1 Introduction 181 9.2 Photolithography 182 9.3 Patterning 183 9.4 Lift-off 184 9.5 Bulk Micromachining 184 9.5.1 Example: Angle of Walls in Silicon (100) Etching 185 9.6 Silicon Etch Stop When Using Alkaline Solutions 186 9.6.1 Example: Boron drive-in at 1050
C 186 9.7 Surface Micromachining 186 9.7.1 Example: Cantilever Fabrication by Surface Micromachining 187 9.8 Dry Etching 188 9.9 CMOS-compatible MEMS Processing 188 9.9.1 Example: Bimorph Actuator Compatible with CMOS Process 189 9.10 Wafer Bonding 190 9.11 PolyMUMPs Foundry Process 190 9.11.1 Example: PolyMUMPs Cantilever for a Fabry-Perot Pressure Sensor 191 Problems 192 APPENDICES 195 A Chapter 1 Solutions 197 B Chapter 2 Solutions 207 C Chapter 3 Solutions 221 D Chapter 4 Solutions 239 E Chapter 5 Solutions 249 F Chapter 6 Solutions 267 G Chapter 7 Solutions 277 H Chapter 8 Solutions 285 I Chapter 9 Solutions 299 References 307 Index 311
11,
12 and
16 for unit axes X
[110], Y
[
110] and Z
[001] 72 4.5.2 Analytical Expressions for Some Rotated Piezoresistive Components 74 4.6 Two-dimensional Piezoresistors 74 4.6.1 Example: Accelerometer with Cantilever and Piezoresistive Sensing 76 4.7 Pressure Sensing with Rectangular Membranes 79 4.7.1 Example: Single-resistor Pressure Sensor 82 4.7.2 Example: Pressure Sensors Comparison 85 4.8 Piezoelectricity 86 4.8.1 Relevant Data for Some Piezoelectric Materials 88 4.8.2 Example: Piezoelectric Generator 89 Problems 91 5 Electrostatic Driving and Sensing 93 5.1 Energy and Co-energy 93 5.2 Voltage Drive 97 5.3 Pull-in Voltage 97 5.3.1 Example: Forces in a Parallel-plate Actuator 99 5.4 Electrostatic Pressure 101 5.5 Contact Resistance in Parallel-plate Switches 101 5.6 Hold-down Voltage 101 5.6.1 Example: Calculation of Hold-down Voltage 102 5.7 Dynamic Response of Pull-in-based Actuators 102 5.7.1 Example: Switching Transient 103 5.8 Charge Drive 105 5.9 Extending the Stable Range 105 5.10 Lateral Electrostatic Force 106 5.11 Comb Actuators 106 5.12 Capacitive Accelerometer 108 5.13 Differential Capacitive Sensing 108 5.14 Torsional Actuator 110 Problems 111 6 Resonators 115 6.1 Free Vibration: Lumped-element Model 115 6.2 Damped Vibration 116 6.3 Forced Vibration 117 6.3.1 Example: Vibration Amplitude as a Function of the Damping Factor 120 6.4 Small Signal Equivalent Circuit of Resonators 121 6.4.1 Example: Series and Parallel Resonances 125 6.4.2 Example: Spring Softening 125 6.5 Rayleigh-Ritz Method 126 6.5.1 Example: Vibration of a Cantilever 128 6.5.2 Example: Gravimetric Chemical Sensor 129 6.6 Resonant Gyroscope 130 6.7 Tuning Fork Gyroscope 133 6.7.1 Example: Calculation of Sensitivity in a Tuning Fork Gyroscope 134 Problems 135 7 Microfluidics and Electrokinetics 137 7.1 Viscous Flow 137 7.2 Flow in a Cylindrical Pipe 140 7.2.1 Example: Pressure Gradient Required to Sustain a Flow 141 7.3 Electrical Double Layer 142 7.3.1 Example: Debye Length and Surface Charge 144 7.4 Electro-osmotic Flow 144 7.5 Electrowetting 146 7.5.1 Example: Droplet Change by Electrowetting 148 7.5.2 Example: Full Substrate Contacts 149 7.6 Electrowetting Dynamics 151 7.6.1 Example: Contact-angle Dynamics 153 7.7 Dielectrophoresis 153 7.7.1 Electric Potential Created by a Constant Electric Field 154 7.7.2 Potential Created by an Electrical Dipole 155 7.7.3 Superposition 156 Problems 157 8 Thermal Devices 159 8.1 Steady-state Heat Equation 159 8.2 Thermal Resistance 161 8.2.1 Example: Temperature Profile in a Heated Wire 162 8.2.2 Example: Resistor Suspended in a Bridge 165 8.3 Platinum Resistors 166 8.4 Flow Measurement Based on Thermal Sensors 166 8.4.1 Example: Micromachined Flow Sensor 169 8.5 Dynamic Thermal Equivalent Circuit 171 8.6 Thermally Actuated Bimorph 172 8.6.1 Example: Bimorph Actuator 174 8.7 Thermocouples and Thermopiles 175 8.7.1 Example: IR Detector 175 Problems 176 9 Fabrication 181 9.1 Introduction 181 9.2 Photolithography 182 9.3 Patterning 183 9.4 Lift-off 184 9.5 Bulk Micromachining 184 9.5.1 Example: Angle of Walls in Silicon (100) Etching 185 9.6 Silicon Etch Stop When Using Alkaline Solutions 186 9.6.1 Example: Boron drive-in at 1050
C 186 9.7 Surface Micromachining 186 9.7.1 Example: Cantilever Fabrication by Surface Micromachining 187 9.8 Dry Etching 188 9.9 CMOS-compatible MEMS Processing 188 9.9.1 Example: Bimorph Actuator Compatible with CMOS Process 189 9.10 Wafer Bonding 190 9.11 PolyMUMPs Foundry Process 190 9.11.1 Example: PolyMUMPs Cantilever for a Fabry-Perot Pressure Sensor 191 Problems 192 APPENDICES 195 A Chapter 1 Solutions 197 B Chapter 2 Solutions 207 C Chapter 3 Solutions 221 D Chapter 4 Solutions 239 E Chapter 5 Solutions 249 F Chapter 6 Solutions 267 G Chapter 7 Solutions 277 H Chapter 8 Solutions 285 I Chapter 9 Solutions 299 References 307 Index 311