J. C. Das
Understanding Symmetrical Components for Power System Modeling (eBook, PDF)
79,99 €
79,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
79,99 €
Als Download kaufen
79,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
79,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
J. C. Das
Understanding Symmetrical Components for Power System Modeling (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
An essential guide to studying symmetrical component theory
Provides concise treatment of symmetrical components | Describes major sequence models of power system components | Discusses Electromagnetic Transient Program (EMTP) models | Includes worked examples to illustrate the complexity of calculations, followed by matrix methods of solution which have been adopted for calculations on digital computers
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 8.94MB
Andere Kunden interessierten sich auch für
- Frank DeleaUnderstanding Electric Power Systems (eBook, PDF)89,99 €
- J. C. DasPower System Harmonics and Passive Filter Designs (eBook, PDF)131,99 €
- Yoshihide HasePower System Dynamics with Computer-Based Modeling and Analysis (eBook, PDF)170,99 €
- Understanding Wind Power Technology (eBook, PDF)68,99 €
- Eiichi HaginomoriPower System Transient Analysis (eBook, PDF)89,99 €
- Federico MilanoFrequency Variations in Power Systems (eBook, PDF)119,99 €
- Marc BoillotAdvanced Smartgrids for Distribution System Operators, Volume 1 (eBook, PDF)139,99 €
-
-
-
An essential guide to studying symmetrical component theory
- Provides concise treatment of symmetrical components
- Describes major sequence models of power system components
- Discusses Electromagnetic Transient Program (EMTP) models
- Includes worked examples to illustrate the complexity of calculations, followed by matrix methods of solution which have been adopted for calculations on digital computers
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-Blackwell
- Erscheinungstermin: 8. Dezember 2016
- Englisch
- ISBN-13: 9781119226871
- Artikelnr.: 47391662
- Verlag: Wiley-Blackwell
- Erscheinungstermin: 8. Dezember 2016
- Englisch
- ISBN-13: 9781119226871
- Artikelnr.: 47391662
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
J.C. Das is President, Power System Studies, Inc. Snellville, Georgia. He is an independent consultant, currently with AMEC Foster Wheeler, Inc., a leading supplier of high-value consultancy, engineering, and project management services to the world's energy, power, and process industries. He is the author of IEEE Press titles Power System Harmonics and Passive Filter Designs (2015) and Arc Flash Hazard Analysis and Mitigation (2012).
ABOUT THE AUTHOR ix
FOREWORD xi
PREFACE AND ACKNOWLEDGMENTS xiii
CHAPTER 1 SYMMETRICAL COMPONENTS USING MATRIX METHODS 1
1.1 Transformations 2
1.2 Characteristic Roots, Eigenvalues, and Eigenvectors 2
1.2.1 Definitions 2
1.2.1.1 Characteristic Matrix 2
1.2.1.2 Characteristic Polynomial 2
1.2.1.3 Characteristic Equation 2
1.2.1.4 Eigenvalues 2
1.2.1.5 Eigenvectors, Characteristic Vectors 2
1.3 Diagonalization of a Matrix 5
1.4 Similarity Transformation 5
1.5 Decoupling a Three-Phase Symmetrical System 6
1.6 Symmetrical Component Transformation 8
1.7 Decoupling a Three-Phase Unsymmetrical System 10
1.8 Clarke Component Transformation 11
1.9 Significance of Selection of Eigenvectors in Symmetrical Components 12
References 14
CHAPTER 2 FUNDAMENTAL CONCEPTS OF SYMMETRICAL COMPONENTS 15
2.1 Characteristics of Symmetrical Components 16
2.2 Characteristics of Sequence Networks 19
2.3 Sequence Impedance of Network Components 20
2.4 Construction of Sequence Networks 20
2.5 Sequence Components of Transformers 22
2.5.1 Delta-Wye or Wye-Delta Transformer 22
2.5.2 Wye-Wye Transformer 25
2.5.3 Delta-Delta Transformer 25
2.5.4 Zigzag Transformer 25
2.5.5 Three-Winding Transformers 27
2.6 Example of Construction of Sequence Networks 32
References 36
CHAPTER 3 SYMMETRICAL COMPONENTS-TRANSMISSION LINES AND CABLES 39
3.1 Impedance Matrix of Three-Phase Symmetrical Line 40
3.2 Three-Phase Line with Ground Conductors 40
3.3 Bundle Conductors 42
3.4 Carson's Formula 44
3.4.1 Approximations to Carson's Equations 46
3.5 Capacitance of Lines 50
3.5.1 Capacitance Matrix 50
3.6 Cable Constants 54
3.6.1 Zero Sequence Impedance of the OH lines and Cables 54
3.6.2 Concentric Neutral Underground Cable 55
3.6.3 Capacitance of Cables 57
3.7 EMTP Models 58
3.7.1 Frequency Dependent Model, FD 60
3.8 Effect of Harmonics on Line Models 62
3.9 Transmission Line Equations with Harmonics 62
References 66
CHAPTER 4 SEQUENCE IMPEDANCES OF ROTATING EQUIPMENT AND STATIC LOAD 69
4.1 Synchronous Generators 69
4.1.1 Positive Sequence Impedance 69
4.1.2 Negative Sequence Impedance 70
4.1.3 Negative Sequence Capability of Generators 71
4.1.3.1 Effect of Harmonics 71
4.1.4 Zero Sequence Impedance 73
4.1.5 Sequence Component Transformation 75
4.1.6 Three-Phase Short-Circuit of a Generator 77
4.1.7 Park's Transformation 79
4.2 Induction Motors 81
4.2.1 Equivalent Circuit 81
4.2.2 Negative Sequence Impedance 83
4.2.3 Harmonic Impedances 84
4.2.4 Zero Sequence Impedance 86
4.2.5 Terminal Short-Circuit of an Induction Motor 86
4.3 Static Loads 87
4.4 Harmonics and Sequence Components 87
References 88
Further Reading 89
CHAPTER 5 THREE-PHASE MODELS OF TRANSFORMERS AND CONDUCTORS 91
5.1 Three-Phase Models 91
5.2 Three-Phase Transformer Models 91
5.2.1 Symmetrical Components of Three-Phase Transformers 94
5.3 Conductors 99
References 102
CHAPTER 6 UNSYMMETRICAL FAULT CALCULATIONS 103
6.1 Line-to-Ground Fault 104
6.2 Line-to-Line Fault 106
6.3 Double Line-to-Ground Fault 107
6.4 Three-Phase Fault 109
6.5 Phase Shift in Three-Phase Transformer Windings 110
6.5.1 Transformer Connections 110
6.5.2 Phase Shifts in Winding as per Standards 112
6.5.3 Phase Shift for Negative Sequence Components 115
6.6 Unsymmetrical Long Hand Fault Calculations 116
6.7 Open Conductor Faults 126
6.7.1 Two Conductor Open Fault 126
6.7.2 One Conductor Open Fault 127
6.8 Short-Circuit Calculations with Bus Impedance Matrix 131
6.8.1 Line-to-Ground Fault 131
6.8.2 Line-to-Line Fault 131
6.8.3 Double Line-to-Ground Fault 131
6.8.4 Calculation Procedure 133
6.9 System Grounding 138
6.9.1 Solidly Grounded Systems 140
6.9.2 Resistance Grounded Systems 140
6.9.3 High-Resistance Grounded Systems 141
6.9.4 Coefficient of Grounding 143
References 145
Further Reading 145
CHAPTER 7 SOME LIMITATIONS OF SYMMETRICAL COMPONENTS 147
7.1 Phase Coordinate Method 148
7.2 Three-Phase Models 150
7.2.1 Generators 150
7.2.2 Generator Model for Cogeneration 152
7.2.3 Load Models 152
7.3 Multiple Grounded Systems 154
7.3.1 Equivalent Circuit of Multiple Grounded Systems 156
7.3.2 Equivalent Circuit Approach 156
References 158
INDEX 159
FOREWORD xi
PREFACE AND ACKNOWLEDGMENTS xiii
CHAPTER 1 SYMMETRICAL COMPONENTS USING MATRIX METHODS 1
1.1 Transformations 2
1.2 Characteristic Roots, Eigenvalues, and Eigenvectors 2
1.2.1 Definitions 2
1.2.1.1 Characteristic Matrix 2
1.2.1.2 Characteristic Polynomial 2
1.2.1.3 Characteristic Equation 2
1.2.1.4 Eigenvalues 2
1.2.1.5 Eigenvectors, Characteristic Vectors 2
1.3 Diagonalization of a Matrix 5
1.4 Similarity Transformation 5
1.5 Decoupling a Three-Phase Symmetrical System 6
1.6 Symmetrical Component Transformation 8
1.7 Decoupling a Three-Phase Unsymmetrical System 10
1.8 Clarke Component Transformation 11
1.9 Significance of Selection of Eigenvectors in Symmetrical Components 12
References 14
CHAPTER 2 FUNDAMENTAL CONCEPTS OF SYMMETRICAL COMPONENTS 15
2.1 Characteristics of Symmetrical Components 16
2.2 Characteristics of Sequence Networks 19
2.3 Sequence Impedance of Network Components 20
2.4 Construction of Sequence Networks 20
2.5 Sequence Components of Transformers 22
2.5.1 Delta-Wye or Wye-Delta Transformer 22
2.5.2 Wye-Wye Transformer 25
2.5.3 Delta-Delta Transformer 25
2.5.4 Zigzag Transformer 25
2.5.5 Three-Winding Transformers 27
2.6 Example of Construction of Sequence Networks 32
References 36
CHAPTER 3 SYMMETRICAL COMPONENTS-TRANSMISSION LINES AND CABLES 39
3.1 Impedance Matrix of Three-Phase Symmetrical Line 40
3.2 Three-Phase Line with Ground Conductors 40
3.3 Bundle Conductors 42
3.4 Carson's Formula 44
3.4.1 Approximations to Carson's Equations 46
3.5 Capacitance of Lines 50
3.5.1 Capacitance Matrix 50
3.6 Cable Constants 54
3.6.1 Zero Sequence Impedance of the OH lines and Cables 54
3.6.2 Concentric Neutral Underground Cable 55
3.6.3 Capacitance of Cables 57
3.7 EMTP Models 58
3.7.1 Frequency Dependent Model, FD 60
3.8 Effect of Harmonics on Line Models 62
3.9 Transmission Line Equations with Harmonics 62
References 66
CHAPTER 4 SEQUENCE IMPEDANCES OF ROTATING EQUIPMENT AND STATIC LOAD 69
4.1 Synchronous Generators 69
4.1.1 Positive Sequence Impedance 69
4.1.2 Negative Sequence Impedance 70
4.1.3 Negative Sequence Capability of Generators 71
4.1.3.1 Effect of Harmonics 71
4.1.4 Zero Sequence Impedance 73
4.1.5 Sequence Component Transformation 75
4.1.6 Three-Phase Short-Circuit of a Generator 77
4.1.7 Park's Transformation 79
4.2 Induction Motors 81
4.2.1 Equivalent Circuit 81
4.2.2 Negative Sequence Impedance 83
4.2.3 Harmonic Impedances 84
4.2.4 Zero Sequence Impedance 86
4.2.5 Terminal Short-Circuit of an Induction Motor 86
4.3 Static Loads 87
4.4 Harmonics and Sequence Components 87
References 88
Further Reading 89
CHAPTER 5 THREE-PHASE MODELS OF TRANSFORMERS AND CONDUCTORS 91
5.1 Three-Phase Models 91
5.2 Three-Phase Transformer Models 91
5.2.1 Symmetrical Components of Three-Phase Transformers 94
5.3 Conductors 99
References 102
CHAPTER 6 UNSYMMETRICAL FAULT CALCULATIONS 103
6.1 Line-to-Ground Fault 104
6.2 Line-to-Line Fault 106
6.3 Double Line-to-Ground Fault 107
6.4 Three-Phase Fault 109
6.5 Phase Shift in Three-Phase Transformer Windings 110
6.5.1 Transformer Connections 110
6.5.2 Phase Shifts in Winding as per Standards 112
6.5.3 Phase Shift for Negative Sequence Components 115
6.6 Unsymmetrical Long Hand Fault Calculations 116
6.7 Open Conductor Faults 126
6.7.1 Two Conductor Open Fault 126
6.7.2 One Conductor Open Fault 127
6.8 Short-Circuit Calculations with Bus Impedance Matrix 131
6.8.1 Line-to-Ground Fault 131
6.8.2 Line-to-Line Fault 131
6.8.3 Double Line-to-Ground Fault 131
6.8.4 Calculation Procedure 133
6.9 System Grounding 138
6.9.1 Solidly Grounded Systems 140
6.9.2 Resistance Grounded Systems 140
6.9.3 High-Resistance Grounded Systems 141
6.9.4 Coefficient of Grounding 143
References 145
Further Reading 145
CHAPTER 7 SOME LIMITATIONS OF SYMMETRICAL COMPONENTS 147
7.1 Phase Coordinate Method 148
7.2 Three-Phase Models 150
7.2.1 Generators 150
7.2.2 Generator Model for Cogeneration 152
7.2.3 Load Models 152
7.3 Multiple Grounded Systems 154
7.3.1 Equivalent Circuit of Multiple Grounded Systems 156
7.3.2 Equivalent Circuit Approach 156
References 158
INDEX 159
ABOUT THE AUTHOR ix
FOREWORD xi
PREFACE AND ACKNOWLEDGMENTS xiii
CHAPTER 1 SYMMETRICAL COMPONENTS USING MATRIX METHODS 1
1.1 Transformations 2
1.2 Characteristic Roots, Eigenvalues, and Eigenvectors 2
1.2.1 Definitions 2
1.2.1.1 Characteristic Matrix 2
1.2.1.2 Characteristic Polynomial 2
1.2.1.3 Characteristic Equation 2
1.2.1.4 Eigenvalues 2
1.2.1.5 Eigenvectors, Characteristic Vectors 2
1.3 Diagonalization of a Matrix 5
1.4 Similarity Transformation 5
1.5 Decoupling a Three-Phase Symmetrical System 6
1.6 Symmetrical Component Transformation 8
1.7 Decoupling a Three-Phase Unsymmetrical System 10
1.8 Clarke Component Transformation 11
1.9 Significance of Selection of Eigenvectors in Symmetrical Components 12
References 14
CHAPTER 2 FUNDAMENTAL CONCEPTS OF SYMMETRICAL COMPONENTS 15
2.1 Characteristics of Symmetrical Components 16
2.2 Characteristics of Sequence Networks 19
2.3 Sequence Impedance of Network Components 20
2.4 Construction of Sequence Networks 20
2.5 Sequence Components of Transformers 22
2.5.1 Delta-Wye or Wye-Delta Transformer 22
2.5.2 Wye-Wye Transformer 25
2.5.3 Delta-Delta Transformer 25
2.5.4 Zigzag Transformer 25
2.5.5 Three-Winding Transformers 27
2.6 Example of Construction of Sequence Networks 32
References 36
CHAPTER 3 SYMMETRICAL COMPONENTS-TRANSMISSION LINES AND CABLES 39
3.1 Impedance Matrix of Three-Phase Symmetrical Line 40
3.2 Three-Phase Line with Ground Conductors 40
3.3 Bundle Conductors 42
3.4 Carson's Formula 44
3.4.1 Approximations to Carson's Equations 46
3.5 Capacitance of Lines 50
3.5.1 Capacitance Matrix 50
3.6 Cable Constants 54
3.6.1 Zero Sequence Impedance of the OH lines and Cables 54
3.6.2 Concentric Neutral Underground Cable 55
3.6.3 Capacitance of Cables 57
3.7 EMTP Models 58
3.7.1 Frequency Dependent Model, FD 60
3.8 Effect of Harmonics on Line Models 62
3.9 Transmission Line Equations with Harmonics 62
References 66
CHAPTER 4 SEQUENCE IMPEDANCES OF ROTATING EQUIPMENT AND STATIC LOAD 69
4.1 Synchronous Generators 69
4.1.1 Positive Sequence Impedance 69
4.1.2 Negative Sequence Impedance 70
4.1.3 Negative Sequence Capability of Generators 71
4.1.3.1 Effect of Harmonics 71
4.1.4 Zero Sequence Impedance 73
4.1.5 Sequence Component Transformation 75
4.1.6 Three-Phase Short-Circuit of a Generator 77
4.1.7 Park's Transformation 79
4.2 Induction Motors 81
4.2.1 Equivalent Circuit 81
4.2.2 Negative Sequence Impedance 83
4.2.3 Harmonic Impedances 84
4.2.4 Zero Sequence Impedance 86
4.2.5 Terminal Short-Circuit of an Induction Motor 86
4.3 Static Loads 87
4.4 Harmonics and Sequence Components 87
References 88
Further Reading 89
CHAPTER 5 THREE-PHASE MODELS OF TRANSFORMERS AND CONDUCTORS 91
5.1 Three-Phase Models 91
5.2 Three-Phase Transformer Models 91
5.2.1 Symmetrical Components of Three-Phase Transformers 94
5.3 Conductors 99
References 102
CHAPTER 6 UNSYMMETRICAL FAULT CALCULATIONS 103
6.1 Line-to-Ground Fault 104
6.2 Line-to-Line Fault 106
6.3 Double Line-to-Ground Fault 107
6.4 Three-Phase Fault 109
6.5 Phase Shift in Three-Phase Transformer Windings 110
6.5.1 Transformer Connections 110
6.5.2 Phase Shifts in Winding as per Standards 112
6.5.3 Phase Shift for Negative Sequence Components 115
6.6 Unsymmetrical Long Hand Fault Calculations 116
6.7 Open Conductor Faults 126
6.7.1 Two Conductor Open Fault 126
6.7.2 One Conductor Open Fault 127
6.8 Short-Circuit Calculations with Bus Impedance Matrix 131
6.8.1 Line-to-Ground Fault 131
6.8.2 Line-to-Line Fault 131
6.8.3 Double Line-to-Ground Fault 131
6.8.4 Calculation Procedure 133
6.9 System Grounding 138
6.9.1 Solidly Grounded Systems 140
6.9.2 Resistance Grounded Systems 140
6.9.3 High-Resistance Grounded Systems 141
6.9.4 Coefficient of Grounding 143
References 145
Further Reading 145
CHAPTER 7 SOME LIMITATIONS OF SYMMETRICAL COMPONENTS 147
7.1 Phase Coordinate Method 148
7.2 Three-Phase Models 150
7.2.1 Generators 150
7.2.2 Generator Model for Cogeneration 152
7.2.3 Load Models 152
7.3 Multiple Grounded Systems 154
7.3.1 Equivalent Circuit of Multiple Grounded Systems 156
7.3.2 Equivalent Circuit Approach 156
References 158
INDEX 159
FOREWORD xi
PREFACE AND ACKNOWLEDGMENTS xiii
CHAPTER 1 SYMMETRICAL COMPONENTS USING MATRIX METHODS 1
1.1 Transformations 2
1.2 Characteristic Roots, Eigenvalues, and Eigenvectors 2
1.2.1 Definitions 2
1.2.1.1 Characteristic Matrix 2
1.2.1.2 Characteristic Polynomial 2
1.2.1.3 Characteristic Equation 2
1.2.1.4 Eigenvalues 2
1.2.1.5 Eigenvectors, Characteristic Vectors 2
1.3 Diagonalization of a Matrix 5
1.4 Similarity Transformation 5
1.5 Decoupling a Three-Phase Symmetrical System 6
1.6 Symmetrical Component Transformation 8
1.7 Decoupling a Three-Phase Unsymmetrical System 10
1.8 Clarke Component Transformation 11
1.9 Significance of Selection of Eigenvectors in Symmetrical Components 12
References 14
CHAPTER 2 FUNDAMENTAL CONCEPTS OF SYMMETRICAL COMPONENTS 15
2.1 Characteristics of Symmetrical Components 16
2.2 Characteristics of Sequence Networks 19
2.3 Sequence Impedance of Network Components 20
2.4 Construction of Sequence Networks 20
2.5 Sequence Components of Transformers 22
2.5.1 Delta-Wye or Wye-Delta Transformer 22
2.5.2 Wye-Wye Transformer 25
2.5.3 Delta-Delta Transformer 25
2.5.4 Zigzag Transformer 25
2.5.5 Three-Winding Transformers 27
2.6 Example of Construction of Sequence Networks 32
References 36
CHAPTER 3 SYMMETRICAL COMPONENTS-TRANSMISSION LINES AND CABLES 39
3.1 Impedance Matrix of Three-Phase Symmetrical Line 40
3.2 Three-Phase Line with Ground Conductors 40
3.3 Bundle Conductors 42
3.4 Carson's Formula 44
3.4.1 Approximations to Carson's Equations 46
3.5 Capacitance of Lines 50
3.5.1 Capacitance Matrix 50
3.6 Cable Constants 54
3.6.1 Zero Sequence Impedance of the OH lines and Cables 54
3.6.2 Concentric Neutral Underground Cable 55
3.6.3 Capacitance of Cables 57
3.7 EMTP Models 58
3.7.1 Frequency Dependent Model, FD 60
3.8 Effect of Harmonics on Line Models 62
3.9 Transmission Line Equations with Harmonics 62
References 66
CHAPTER 4 SEQUENCE IMPEDANCES OF ROTATING EQUIPMENT AND STATIC LOAD 69
4.1 Synchronous Generators 69
4.1.1 Positive Sequence Impedance 69
4.1.2 Negative Sequence Impedance 70
4.1.3 Negative Sequence Capability of Generators 71
4.1.3.1 Effect of Harmonics 71
4.1.4 Zero Sequence Impedance 73
4.1.5 Sequence Component Transformation 75
4.1.6 Three-Phase Short-Circuit of a Generator 77
4.1.7 Park's Transformation 79
4.2 Induction Motors 81
4.2.1 Equivalent Circuit 81
4.2.2 Negative Sequence Impedance 83
4.2.3 Harmonic Impedances 84
4.2.4 Zero Sequence Impedance 86
4.2.5 Terminal Short-Circuit of an Induction Motor 86
4.3 Static Loads 87
4.4 Harmonics and Sequence Components 87
References 88
Further Reading 89
CHAPTER 5 THREE-PHASE MODELS OF TRANSFORMERS AND CONDUCTORS 91
5.1 Three-Phase Models 91
5.2 Three-Phase Transformer Models 91
5.2.1 Symmetrical Components of Three-Phase Transformers 94
5.3 Conductors 99
References 102
CHAPTER 6 UNSYMMETRICAL FAULT CALCULATIONS 103
6.1 Line-to-Ground Fault 104
6.2 Line-to-Line Fault 106
6.3 Double Line-to-Ground Fault 107
6.4 Three-Phase Fault 109
6.5 Phase Shift in Three-Phase Transformer Windings 110
6.5.1 Transformer Connections 110
6.5.2 Phase Shifts in Winding as per Standards 112
6.5.3 Phase Shift for Negative Sequence Components 115
6.6 Unsymmetrical Long Hand Fault Calculations 116
6.7 Open Conductor Faults 126
6.7.1 Two Conductor Open Fault 126
6.7.2 One Conductor Open Fault 127
6.8 Short-Circuit Calculations with Bus Impedance Matrix 131
6.8.1 Line-to-Ground Fault 131
6.8.2 Line-to-Line Fault 131
6.8.3 Double Line-to-Ground Fault 131
6.8.4 Calculation Procedure 133
6.9 System Grounding 138
6.9.1 Solidly Grounded Systems 140
6.9.2 Resistance Grounded Systems 140
6.9.3 High-Resistance Grounded Systems 141
6.9.4 Coefficient of Grounding 143
References 145
Further Reading 145
CHAPTER 7 SOME LIMITATIONS OF SYMMETRICAL COMPONENTS 147
7.1 Phase Coordinate Method 148
7.2 Three-Phase Models 150
7.2.1 Generators 150
7.2.2 Generator Model for Cogeneration 152
7.2.3 Load Models 152
7.3 Multiple Grounded Systems 154
7.3.1 Equivalent Circuit of Multiple Grounded Systems 156
7.3.2 Equivalent Circuit Approach 156
References 158
INDEX 159