H. Ehrig, K. -D. Kiermeier, H. -J. Kreowski, W. Kühnel
Universal Theory of Automata (eBook, PDF)
A Categorical Approach
-20%11
35,96 €
44,99 €**
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
-20%11
35,96 €
44,99 €**
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Als Download kaufen
44,99 €****
-20%11
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
44,99 €****
-20%11
35,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
H. Ehrig, K. -D. Kiermeier, H. -J. Kreowski, W. Kühnel
Universal Theory of Automata (eBook, PDF)
A Categorical Approach
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 12.6MB
Andere Kunden interessierten sich auch für
- -20%11V. ClausStochastische Automaten (eBook, PDF)39,99 €
- -20%11Theorie der stochastischen Automaten (eBook, PDF)39,99 €
- -20%11Jean BerstelTransductions and Context-Free Languages (eBook, PDF)35,96 €
- -26%11Wilfried BrauerAutomatentheorie (eBook, PDF)36,99 €
- -30%11Wolffried StuckyAutomaten Sprachen Berechenbarkeit (eBook, PDF)38,66 €
- -33%11Harald GanzingerInformatik (eBook, PDF)33,26 €
- -26%11Hans-Dieter EhrichAlgebraische Spezifikation abstrakter Datentypen (eBook, PDF)36,99 €
- -33%11
-
-
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 240
- Erscheinungstermin: 17. April 2013
- Deutsch
- ISBN-13: 9783322966445
- Artikelnr.: 53099132
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Unified Representation of Automata.- deterministic, nondeterministic, stochastic, linear, bilinear, and topological automata (1.1-1.7); monoidal categories (1.8-1.10); automata in monoidal categories (1.11-1.14).- 2. Some Problems in Automata Theory.- behavior, reduction, minimization and realization of deterministic automata (2.1-2.6); nondeterministic automata (2.7); transition monoids (2.8); structure theory (2.9).- 3. General Concepts of Reduction, Minimization and Realization.- concept of systematics (3.1); reduced, minimal and realizing systems and subsystematics (3.2-3.3); reduction theorem (3.4); minimal realization theorem (3.6).- 4. Behavior of Automata in Closed Categories: The Deterministic Case.- extended output morphisms and coproducts (4.2); machine morphisms and closed categories (4.3-4.4); characterization of automata (4.5); behavior and image-factorization (4.6-4.7); behavior characterization (4.8); list of examples (4.9).- 5. Reduction and Minimization of Automata in Closed Categories.- systematic of automata in closed categories (5.2); minimal realization theorem (5.3); observable and reduced automata (5.4); reduction and minimization theorem (5.5); monoid automata and transition monoids (5.6-5.7).- 6. Behavior of Automata in Pseudoclosed Categories: The Nondeterministic Case.- automata in pseudoclosed categories - extended output, machine morphism and behavior (6.2-6.4); characterization of machine morphisms and behaviors (6.6-6.7); list of examples (6.8).- 7. Reduction and Minimization of Automata in Pseudoclosed Categories.- construction of reduced and observable automata (7.2-7.4); realization (7.5); systematic of automata in pseudoclosed categories (7.6); reduction theorem (7.7); minimization theorem (7.8); strongminimality (7.9).- 8. Power Automata.- construction of power automata (8.2); power automata theorem (8.3-8.4); kernel automata (8.5).- 9. Initial Automata.- systematic of initial automata (9.2); free realization (9.3); minimal realization theorem (9.5); reachability theorem (9.7); reduction and observability construction (9.8-9.9); observable and finite realization (9.10); initial power automata (9.11).- 10. Scoop Minimization.- scoops and scoop automata theorem (10.2-10.4); scoop construction (10.5-10.7); scoop minimization theorem (10.8).- 11. Structure Theory of Automata.- construction of equalizer, product, coequalizer, coproduct and free automata (11.2-11.7); characterization of iso-, mono- and epimorphisms (11.8); factorization of automata morphisms (11.9).- 12. Appendix: Basic Notions of Category Theory.- categories (12.1); diagrams (12.2); iso-, mono-, epimorphisms (12.3); products, coproducts (12.4); functors (12.5); natural transformations (12.6); adjoint functors (12.7); comma categories (12.8); special limits and colimits (12.9-12.10).- Special Symbols.- References.
1. Unified Representation of Automata.- deterministic, nondeterministic, stochastic, linear, bilinear, and topological automata (1.1-1.7); monoidal categories (1.8-1.10); automata in monoidal categories (1.11-1.14).- 2. Some Problems in Automata Theory.- behavior, reduction, minimization and realization of deterministic automata (2.1-2.6); nondeterministic automata (2.7); transition monoids (2.8); structure theory (2.9).- 3. General Concepts of Reduction, Minimization and Realization.- concept of systematics (3.1); reduced, minimal and realizing systems and subsystematics (3.2-3.3); reduction theorem (3.4); minimal realization theorem (3.6).- 4. Behavior of Automata in Closed Categories: The Deterministic Case.- extended output morphisms and coproducts (4.2); machine morphisms and closed categories (4.3-4.4); characterization of automata (4.5); behavior and image-factorization (4.6-4.7); behavior characterization (4.8); list of examples (4.9).- 5. Reduction and Minimization of Automata in Closed Categories.- systematic of automata in closed categories (5.2); minimal realization theorem (5.3); observable and reduced automata (5.4); reduction and minimization theorem (5.5); monoid automata and transition monoids (5.6-5.7).- 6. Behavior of Automata in Pseudoclosed Categories: The Nondeterministic Case.- automata in pseudoclosed categories - extended output, machine morphism and behavior (6.2-6.4); characterization of machine morphisms and behaviors (6.6-6.7); list of examples (6.8).- 7. Reduction and Minimization of Automata in Pseudoclosed Categories.- construction of reduced and observable automata (7.2-7.4); realization (7.5); systematic of automata in pseudoclosed categories (7.6); reduction theorem (7.7); minimization theorem (7.8); strongminimality (7.9).- 8. Power Automata.- construction of power automata (8.2); power automata theorem (8.3-8.4); kernel automata (8.5).- 9. Initial Automata.- systematic of initial automata (9.2); free realization (9.3); minimal realization theorem (9.5); reachability theorem (9.7); reduction and observability construction (9.8-9.9); observable and finite realization (9.10); initial power automata (9.11).- 10. Scoop Minimization.- scoops and scoop automata theorem (10.2-10.4); scoop construction (10.5-10.7); scoop minimization theorem (10.8).- 11. Structure Theory of Automata.- construction of equalizer, product, coequalizer, coproduct and free automata (11.2-11.7); characterization of iso-, mono- and epimorphisms (11.8); factorization of automata morphisms (11.9).- 12. Appendix: Basic Notions of Category Theory.- categories (12.1); diagrams (12.2); iso-, mono-, epimorphisms (12.3); products, coproducts (12.4); functors (12.5); natural transformations (12.6); adjoint functors (12.7); comma categories (12.8); special limits and colimits (12.9-12.10).- Special Symbols.- References.