13,99 €
Statt 17,95 €**
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
13,99 €
Statt 17,95 €**
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 17,95 €****
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 17,95 €****
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Unterrichtsentwurf aus dem Jahr 2004 im Fachbereich Mathematik - Analysis, , Veranstaltung: Lehrprobe, Sprache: Deutsch, Abstract: Unterrichtsentwurf in einer Fachoberschulklasse 12 im Fach Mathematik mitsamt Stundenverlaufsraster, Arbeitsblättern und Funktionsgraphen: Das notwendige Kriterium für Extremstellen wird anhand einer realitätsnahen und handlungsorientierten Problemstellung (Volumenmaximierung einer oben offenen Schachtel) erarbeitet. In der beschriebenen Doppelstunde soll das notwendige Kriterium für Extremstellen erarbeitet werden. Am Beispiel der Volumenmaximierung einer oben…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 1.17MB
Produktbeschreibung
Unterrichtsentwurf aus dem Jahr 2004 im Fachbereich Mathematik - Analysis, , Veranstaltung: Lehrprobe, Sprache: Deutsch, Abstract: Unterrichtsentwurf in einer Fachoberschulklasse 12 im Fach Mathematik mitsamt Stundenverlaufsraster, Arbeitsblättern und Funktionsgraphen: Das notwendige Kriterium für Extremstellen wird anhand einer realitätsnahen und handlungsorientierten Problemstellung (Volumenmaximierung einer oben offenen Schachtel) erarbeitet. In der beschriebenen Doppelstunde soll das notwendige Kriterium für Extremstellen erarbeitet werden. Am Beispiel der Volumenmaximierung einer oben offenen Schachtel (Extremwertproblem) sollen die Schüler eine realistische Problemstellung mathematisieren und im Zuge der Lösung Kriterien für Extrempunkte kennen lernen. Die entscheidende Erkenntnis für die Schüler ist, dass das Volumen einer Schachtel in Abhängigkeit von der Höhe erheblich variieren kann und dass die Mathematik ein wesentliches Hilfsmittel zur Lösung von Optimierungsproblemen (Bestimmung der Maße einer optimalen Schachtel) ist.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.