113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
Als Download kaufen
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
Jetzt verschenken
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
  • Format: PDF

The mechanisms and physiological functions of urea transport across biological membranes are subjects of long-standing interest. Recent advances in the molecular biology and physiology of urea transport have yielded new insights into how and why urea moves across cell membranes. In the last two decades, seven facilitated urea transporters (UT-A1-6 and UT-B) have been cloned, and their gene organization, protein crystal structure, expression localization and physiological functions in the tissues have been described. In recent years, the studies in urea transporter knockout mouse models suggest…mehr

Produktbeschreibung
The mechanisms and physiological functions of urea transport across biological membranes are subjects of long-standing interest. Recent advances in the molecular biology and physiology of urea transport have yielded new insights into how and why urea moves across cell membranes. In the last two decades, seven facilitated urea transporters (UT-A1-6 and UT-B) have been cloned, and their gene organization, protein crystal structure, expression localization and physiological functions in the tissues have been described. In recent years, the studies in urea transporter knockout mouse models suggest that urea transporters may be useful targets for drug discovery of selective inhibitors. The modulation of urea transport activity by pharmacological agents may provide novel treatments for hypertension, congestive heart failure and other fluid-retaining states. However, although urea represents about 40% of all urinary solutes in normal human urine, the handling of this solute in the tissues has been largely neglected in the past, and few clinical or experimental studies now report data about urea. Most recent physiological textbooks include chapters on water and electrolyte physiology but not a single chapter on urea. Our aim in writing this book is to stimulate further research in new directions by providing novel and provocative insights into further mechanisms and the physiological significance of urea metabolism and transport in mammals. The book provides a state-of-the-art report on the latest findings on urea transport and where the field is going. Although some older work is cited, the main focus is on advances made over the past 20 years with regard to the biophysics, genetics, protein structure, molecular biology, physiology, pathophysiology and pharmacology of urea transport in mammalian cell membranes. These aspects are especially valid, as advances in our understanding of urea transporting mechanisms and physiology promise to yield new insights intobiology and medicine.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Baoxue Yang is a professor and vice chairman of Department of Pharmacology, Peking University. He is also an adjunct professor of Jilin University and a visiting professor of Northeast Normal University. Prof. Yang has been studying on urea transporter for nearly 20 years and published more than 70 original research articles in this field. Jeff M. Sands is the Juha P. Kokko Professor of Medicine and Physiology, Director of the Renal Division, and Executive Vice-Chair of the Department of Medicine at Emory Universtiy School of Medicine. Dr. Sands' research focuses on urea transport proteins and the urine concentrating mechanisms.