Andrew B. Lawson
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling (eBook, ePUB)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Andrew B. Lawson
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.74MB
Andere Kunden interessierten sich auch für
- Andrew B. LawsonUsing R for Bayesian Spatial and Spatio-Temporal Health Modeling (eBook, PDF)48,95 €
- Gary L RosnerBayesian Thinking in Biostatistics (eBook, ePUB)109,95 €
- Gavin ShaddickSpatio-Temporal Methods in Environmental Epidemiology with R (eBook, ePUB)95,95 €
- Gary L RosnerBayesian Thinking in Biostatistics (eBook, PDF)109,95 €
- Case Studies in Bayesian Methods for Biopharmaceutical CMC (eBook, ePUB)52,95 €
- Iftekhar KhanEconomic Evaluation of Cancer Drugs (eBook, ePUB)48,95 €
- Marie ReillyControlled Epidemiological Studies (eBook, ePUB)52,95 €
-
-
-
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 300
- Erscheinungstermin: 28. April 2021
- Englisch
- ISBN-13: 9781000376722
- Artikelnr.: 61272644
- Verlag: Taylor & Francis
- Seitenzahl: 300
- Erscheinungstermin: 28. April 2021
- Englisch
- ISBN-13: 9781000376722
- Artikelnr.: 61272644
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr Lawson is Professor of Biostatistics in the Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, College of Medicine, MUSC and is an MUSC Distinguished Professor Emeritus and ASA Fellow. His PhD was in Spatial Statistics from the University of St. Andrews, UK.
He has over 190 journal papers on the subject of spatial epidemiology, spatial statistics and related areas. In addition to a number of book chapters, he is the author of 10 books in areas related to spatial epidemiology and health surveillance. The most recent of these is Lawson, A.B. et al (eds) (2016) Handbook of Spatial Epidemiology. CRC Press, New York, and in 2018 a 3rd edition of Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology CRC Press. He has acted as an advisor in disease mapping and risk assessment for the World Health Organization (WHO) and is the founding editor of the Elsevier journal Spatial and Spatio-temporal Epidemiology. Dr Lawson has delivered many short courses in different locations over the last 20 years on Bayesian Disease Mapping with OpenBUGS, INLA, and Nimble, and more general spatial epidemiology topics.
Web site: http://people.musc.edu/~abl6/
He has over 190 journal papers on the subject of spatial epidemiology, spatial statistics and related areas. In addition to a number of book chapters, he is the author of 10 books in areas related to spatial epidemiology and health surveillance. The most recent of these is Lawson, A.B. et al (eds) (2016) Handbook of Spatial Epidemiology. CRC Press, New York, and in 2018 a 3rd edition of Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology CRC Press. He has acted as an advisor in disease mapping and risk assessment for the World Health Organization (WHO) and is the founding editor of the Elsevier journal Spatial and Spatio-temporal Epidemiology. Dr Lawson has delivered many short courses in different locations over the last 20 years on Bayesian Disease Mapping with OpenBUGS, INLA, and Nimble, and more general spatial epidemiology topics.
Web site: http://people.musc.edu/~abl6/
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling