Vacuum Nanoelectronic Devices (eBook, ePUB)
Novel Electron Sources and Applications
Alle Infos zum eBook verschenken
Vacuum Nanoelectronic Devices (eBook, ePUB)
Novel Electron Sources and Applications
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments. This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 25.27MB
- Anatoliy EvtukhVacuum Nanoelectronic Devices (eBook, PDF)107,99 €
- Vladimir PolushkinNuclear Electronics with Quantum Cryogenic Detectors (eBook, ePUB)127,99 €
- Doyeol AhnEngineering Quantum Mechanics (eBook, ePUB)127,99 €
- Eishi H. IbeTerrestrial Radiation Effects in ULSI Devices and Electronic Systems (eBook, ePUB)123,99 €
- Chris MackFundamental Principles of Optical Lithography (eBook, ePUB)179,99 €
- Tak-Kei LamBoolean Circuit Rewiring (eBook, ePUB)123,99 €
- Quan LiSelf-Organized Organic Semiconductors (eBook, ePUB)116,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 472
- Erscheinungstermin: 14. Juli 2015
- Englisch
- ISBN-13: 9781119037972
- Artikelnr.: 43418870
- Verlag: John Wiley & Sons
- Seitenzahl: 472
- Erscheinungstermin: 14. Juli 2015
- Englisch
- ISBN-13: 9781119037972
- Artikelnr.: 43418870
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
ion) 102 3.4.2 Exchange-Correlation Potential (Uxc) 103 3.4.3 Dipole Term (
) 104 3.4.4 Work Function of Semiconductor 106 3.4.5 Work Function of Cathode with Coating 107 3.5 Field and Temperature Dependences of Barrier Height 109 3.6 Influence of Surface Adatoms on Work Function 110 4 Current through the Barrier Structures 119 4.1 Current through One Barrier Structure 119 4.1.1 Case 1: High Bias 122 4.1.2 Case 2: High Bias and Low Temperature 122 4.1.3 Case 3: Small Bias: Linear Response 122 4.1.4 Case 4: Small Bias and Low Temperature 123 4.2 Field Emission Current 123 4.3 Electron Field Emission from Semiconductors 127 4.4 Current through Double Barrier Structures 134 4.4.1 Coherent Resonant Tunneling 134 4.4.2 Sequential Tunneling 139 4.5 Electron Field Emission from Multilayer Nanostructures and Nanoparticles 142 4.5.1 Resonant Tunneling at Electron Field Emission from Nanostructures 142 4.5.2 Two-Step Electron Tunneling through Electronic States in a Nanoparticle 150 4.5.3 Single-Electron Field Emission 159 5 Electron Energy Distribution 172 5.1 Theory of Electron Energy Distribution 172 5.2 Experimental Set Up 175 5.3 Peculiarities of Electron Energy Distribution Spectra at Emission from Semiconductors 177 5.3.1 Electron Energy Distribution of Electrons Emitted from Semiconductors 179 5.4 Electron Energy Distribution at Emission from Spindt-Type Metal Microtips 180 5.5 Electron Energy Distribution of Electrons Emitter from Silicon 185 5.5.1 Electron Energy Distribution of Electrons from Silicon Tips and Arrays 185 5.5.2 Electron Energy Distribution of Electrons from Nanocrystalline Silicon 193 Part II NOVEL ELECTRON SOURCES WITH QUANTUM EFFECTS 6 Si Based Quantum Cathodes 201 6.1 Introduction 201 6.2 Electron Field Emission from Porous Silicon 202 6.3 Electron Field Emission from Silicon with Multilayer Coating 207 6.4 Peculiarities of Electron Field Emission from Si Nanoparticles 208 6.4.1 Electron Field Emission from Nanocomposite SiOx(Si) and SiO2(Si) Films 208 6.4.2 Electron Field Emission from Si Nanocrystalline Films 212 6.4.3 Laser Produced Silicon Tips with SixOyNz(Si) Nanocomposite Film 215 6.5 Formation of Conducting Channels in SiOx Coating Film 217 6.6 Electron Field Emission from Si Nanowires 222 6.7 Metal-Insulator-Metal Emitters 227 6.7.1 Effect of the Top Electrode 237 6.8 Conclusion 240 7 GaN Based Quantum Cathodes 246 7.1 Introduction 246 7.2 Electron Sources with Wide Bandgap Semiconductor Films 247 7.2.1 AlGaN Based Electron Sources 249 7.2.2 Solid-State Field Controlled Emitter 255 7.2.3 Polarization Field Emission Enhancement Model 257 7.2.4 Emission from Nanocrystalline GaN Films 258 7.2.5 Graded Electron Affinity Electron Source 262 7.3 Resonant Tunneling of Field Emitted Electrons through Nanostructured Cathodes 263 7.3.1 Resonant-Tunneling AlxGa1
xN-GaN Structures 263 7.3.2 Multilayer Planar Nanostructured Solid-State Field-Controlled Emitter 266 7.3.3 Geometric Nanostructured AlGaN/GaN Quantum Emitter 270 7.3.4 AlN/GaN Multiple-Barrier Resonant-Tunneling Electron Emitter 273 7.4 Field Emission from GaN Nanorods and Nanowires 277 7.4.1 Intervalley Carrier Redistribution at EFE from Nanostructured Semiconductors 277 7.4.2 Electron Field Emission from GaN Nanowire Film 288 7.4.3 Electron Field Emission from Patterned GaN Nanowire Film 293 7.4.4 Electron Field Emission Properties of Individual GaN Nanowires 295 7.4.5 Photon-Assisted Field Emission from GaN Nanorods 299 7.5 Conclusions 305 8 Carbon-Based Quantum Cathodes 314 8.1 Introduction 314 8.2 Diamond and Diamond Film Emitters 315 8.2.1 Negative Electron Affinity 315 8.2.2 Emission from Diamond and Diamond Films 318 8.2.3 Models of EFE from Diamond 322 8.3 Diamond-Like Carbon Film Emitters 324 8.3.1 Electrically Nanostructured Heterogeneous Emitters 324 8.3.2 Nanostructured Diamond-Like Carbon Films 326 8.3.3 Electron Field Emission from DLC Films 328 8.3.4 Model of EFE from Si Tips Coated with DLC Film 330 8.3.5 Electron Field Emission from Tips Coated with Ultrathin DLC Films 334 8.3.6 Formation of Conductive Nanochannels in DLC Film 336 8.4 Carbon Nanotube Emitters 340 8.4.1 The Peculiarities of Electron Field Emission from CNTs 341 8.4.2 Stability of Electron Field Emission from CNTs 346 8.4.3 Models of Field Emission from CNTs 350 8.5 Electron Emission from Graphene and Nanocarbon 352 8.5.1 Electron Emission from Graphene 352 8.5.2 Electron Emission from CNT-Graphene Composites 355 8.5.3 Electron Emission from Nanocarbon 358 8.6 Conclusion 362 9 Quantum Electron Sources for High Frequency Applications 375 9.1 Introduction 375 9.2 High Frequency Application of Resonant Tunneling Diode 376 9.3 Field Emission Resonant Tunneling Diode 380 9.3.1 Direct Emission Current 381 9.3.2 Microwave Characteristics 383 9.3.3 Calculation of the Direct Emission Current 385 9.3.4 Calculation of Microwave Parameters 386 9.4 Generation of THz Signals in Field Emission Vacuum Devices 391 9.5 AlGaN/GaN Superlattice for THz Generation 398 9.6 Gunn Effect at Electron Field Emission 415 9.7 Field Emission Microwave Sources 420 9.7.1 Modulation of Gated FEAs 422 9.7.2 Current Density 432 9.7.3 CNT FEAs 436 9.8 Conclusion 440 Index 447
ion) 102 3.4.2 Exchange-Correlation Potential (Uxc) 103 3.4.3 Dipole Term (
) 104 3.4.4 Work Function of Semiconductor 106 3.4.5 Work Function of Cathode with Coating 107 3.5 Field and Temperature Dependences of Barrier Height 109 3.6 Influence of Surface Adatoms on Work Function 110 4 Current through the Barrier Structures 119 4.1 Current through One Barrier Structure 119 4.1.1 Case 1: High Bias 122 4.1.2 Case 2: High Bias and Low Temperature 122 4.1.3 Case 3: Small Bias: Linear Response 122 4.1.4 Case 4: Small Bias and Low Temperature 123 4.2 Field Emission Current 123 4.3 Electron Field Emission from Semiconductors 127 4.4 Current through Double Barrier Structures 134 4.4.1 Coherent Resonant Tunneling 134 4.4.2 Sequential Tunneling 139 4.5 Electron Field Emission from Multilayer Nanostructures and Nanoparticles 142 4.5.1 Resonant Tunneling at Electron Field Emission from Nanostructures 142 4.5.2 Two-Step Electron Tunneling through Electronic States in a Nanoparticle 150 4.5.3 Single-Electron Field Emission 159 5 Electron Energy Distribution 172 5.1 Theory of Electron Energy Distribution 172 5.2 Experimental Set Up 175 5.3 Peculiarities of Electron Energy Distribution Spectra at Emission from Semiconductors 177 5.3.1 Electron Energy Distribution of Electrons Emitted from Semiconductors 179 5.4 Electron Energy Distribution at Emission from Spindt-Type Metal Microtips 180 5.5 Electron Energy Distribution of Electrons Emitter from Silicon 185 5.5.1 Electron Energy Distribution of Electrons from Silicon Tips and Arrays 185 5.5.2 Electron Energy Distribution of Electrons from Nanocrystalline Silicon 193 Part II NOVEL ELECTRON SOURCES WITH QUANTUM EFFECTS 6 Si Based Quantum Cathodes 201 6.1 Introduction 201 6.2 Electron Field Emission from Porous Silicon 202 6.3 Electron Field Emission from Silicon with Multilayer Coating 207 6.4 Peculiarities of Electron Field Emission from Si Nanoparticles 208 6.4.1 Electron Field Emission from Nanocomposite SiOx(Si) and SiO2(Si) Films 208 6.4.2 Electron Field Emission from Si Nanocrystalline Films 212 6.4.3 Laser Produced Silicon Tips with SixOyNz(Si) Nanocomposite Film 215 6.5 Formation of Conducting Channels in SiOx Coating Film 217 6.6 Electron Field Emission from Si Nanowires 222 6.7 Metal-Insulator-Metal Emitters 227 6.7.1 Effect of the Top Electrode 237 6.8 Conclusion 240 7 GaN Based Quantum Cathodes 246 7.1 Introduction 246 7.2 Electron Sources with Wide Bandgap Semiconductor Films 247 7.2.1 AlGaN Based Electron Sources 249 7.2.2 Solid-State Field Controlled Emitter 255 7.2.3 Polarization Field Emission Enhancement Model 257 7.2.4 Emission from Nanocrystalline GaN Films 258 7.2.5 Graded Electron Affinity Electron Source 262 7.3 Resonant Tunneling of Field Emitted Electrons through Nanostructured Cathodes 263 7.3.1 Resonant-Tunneling AlxGa1
xN-GaN Structures 263 7.3.2 Multilayer Planar Nanostructured Solid-State Field-Controlled Emitter 266 7.3.3 Geometric Nanostructured AlGaN/GaN Quantum Emitter 270 7.3.4 AlN/GaN Multiple-Barrier Resonant-Tunneling Electron Emitter 273 7.4 Field Emission from GaN Nanorods and Nanowires 277 7.4.1 Intervalley Carrier Redistribution at EFE from Nanostructured Semiconductors 277 7.4.2 Electron Field Emission from GaN Nanowire Film 288 7.4.3 Electron Field Emission from Patterned GaN Nanowire Film 293 7.4.4 Electron Field Emission Properties of Individual GaN Nanowires 295 7.4.5 Photon-Assisted Field Emission from GaN Nanorods 299 7.5 Conclusions 305 8 Carbon-Based Quantum Cathodes 314 8.1 Introduction 314 8.2 Diamond and Diamond Film Emitters 315 8.2.1 Negative Electron Affinity 315 8.2.2 Emission from Diamond and Diamond Films 318 8.2.3 Models of EFE from Diamond 322 8.3 Diamond-Like Carbon Film Emitters 324 8.3.1 Electrically Nanostructured Heterogeneous Emitters 324 8.3.2 Nanostructured Diamond-Like Carbon Films 326 8.3.3 Electron Field Emission from DLC Films 328 8.3.4 Model of EFE from Si Tips Coated with DLC Film 330 8.3.5 Electron Field Emission from Tips Coated with Ultrathin DLC Films 334 8.3.6 Formation of Conductive Nanochannels in DLC Film 336 8.4 Carbon Nanotube Emitters 340 8.4.1 The Peculiarities of Electron Field Emission from CNTs 341 8.4.2 Stability of Electron Field Emission from CNTs 346 8.4.3 Models of Field Emission from CNTs 350 8.5 Electron Emission from Graphene and Nanocarbon 352 8.5.1 Electron Emission from Graphene 352 8.5.2 Electron Emission from CNT-Graphene Composites 355 8.5.3 Electron Emission from Nanocarbon 358 8.6 Conclusion 362 9 Quantum Electron Sources for High Frequency Applications 375 9.1 Introduction 375 9.2 High Frequency Application of Resonant Tunneling Diode 376 9.3 Field Emission Resonant Tunneling Diode 380 9.3.1 Direct Emission Current 381 9.3.2 Microwave Characteristics 383 9.3.3 Calculation of the Direct Emission Current 385 9.3.4 Calculation of Microwave Parameters 386 9.4 Generation of THz Signals in Field Emission Vacuum Devices 391 9.5 AlGaN/GaN Superlattice for THz Generation 398 9.6 Gunn Effect at Electron Field Emission 415 9.7 Field Emission Microwave Sources 420 9.7.1 Modulation of Gated FEAs 422 9.7.2 Current Density 432 9.7.3 CNT FEAs 436 9.8 Conclusion 440 Index 447