47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

This book, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations.

Produktbeschreibung
This book, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Francisco-Javier Sayas is a Professor of Mathematical Sciences at the University of Delaware. He has published over one hundred research articles in refereed journals, and is the author of Retarded Potentials and Time Domain Boundary Integral Equations.

Thomas S. Brown is a lecturer in Computational and Applied Mathematics at Rice University. He received his PhD in Mathematics from the University of Delaware in 2018, under the supervision of Francisco-Javier Sayas. His expertise lies in the theoretical and numerical study of elastic wave propagation in piezoelectric media with applications to control problems.

Matthew E. Hassell is a Systems Engineer at Lockheed Martin. He received his PhD in Applied Mathematics from the University of Delaware in 2016, under the supervision of Francisco-Javier Sayas, working on convolution quadrature techniques for problems in wave propagation and scattering by non-homogeneous media as well as viscous flow around obstacles.