Francisco J. Sayas, Thomas S. Brown, Matthew E. Hassell
Variational Techniques for Elliptic Partial Differential Equations (eBook, PDF)
Theoretical Tools and Advanced Applications
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
47,95 €
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Francisco J. Sayas, Thomas S. Brown, Matthew E. Hassell
Variational Techniques for Elliptic Partial Differential Equations (eBook, PDF)
Theoretical Tools and Advanced Applications
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 2.67MB
Andere Kunden interessierten sich auch für
- Prem K. KythePartial Differential Equations and Mathematica (eBook, PDF)139,95 €
- Santanu Saha RayWavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations (eBook, PDF)51,95 €
- Victor Grigor'e GanzhaNumerical Solutions for Partial Differential Equations (eBook, PDF)61,95 €
- H. J. LeeOrdinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB (eBook, PDF)192,95 €
- Francisco J. SayasVariational Techniques for Elliptic Partial Differential Equations (eBook, ePUB)47,95 €
- Juergen GeiserDecomposition Methods for Differential Equations (eBook, PDF)74,95 €
- Special Functions and Analysis of Differential Equations (eBook, PDF)52,95 €
-
-
-
This book, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 514
- Erscheinungstermin: 16. Januar 2019
- Englisch
- ISBN-13: 9780429016202
- Artikelnr.: 56834462
- Verlag: Taylor & Francis
- Seitenzahl: 514
- Erscheinungstermin: 16. Januar 2019
- Englisch
- ISBN-13: 9780429016202
- Artikelnr.: 56834462
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Francisco-Javier Sayas is a Professor of Mathematical Sciences at the University of Delaware. He has published over one hundred research articles in refereed journals, and is the author of Retarded Potentials and Time Domain Boundary Integral Equations.
Thomas S. Brown is a lecturer in Computational and Applied Mathematics at Rice University. He received his PhD in Mathematics from the University of Delaware in 2018, under the supervision of Francisco-Javier Sayas. His expertise lies in the theoretical and numerical study of elastic wave propagation in piezoelectric media with applications to control problems.
Matthew E. Hassell is a Systems Engineer at Lockheed Martin. He received his PhD in Applied Mathematics from the University of Delaware in 2016, under the supervision of Francisco-Javier Sayas, working on convolution quadrature techniques for problems in wave propagation and scattering by non-homogeneous media as well as viscous flow around obstacles.
Thomas S. Brown is a lecturer in Computational and Applied Mathematics at Rice University. He received his PhD in Mathematics from the University of Delaware in 2018, under the supervision of Francisco-Javier Sayas. His expertise lies in the theoretical and numerical study of elastic wave propagation in piezoelectric media with applications to control problems.
Matthew E. Hassell is a Systems Engineer at Lockheed Martin. He received his PhD in Applied Mathematics from the University of Delaware in 2016, under the supervision of Francisco-Javier Sayas, working on convolution quadrature techniques for problems in wave propagation and scattering by non-homogeneous media as well as viscous flow around obstacles.
I Fundamentals
1 Distributions
2 The homogeneous Dirichlet problem
3 Lipschitz transformations and Lipschitz domains
4 The nonhomogeneous Dirichlet problem
5 Nonsymmetric and complex problems
6 Neumann boundary conditions
7 Poincare inequalities and Neumann problems
8 Compact perturbations of coercive problems
9 Eigenvalues of elliptic operators
II Extensions and Applications
10 Mixed problems
11 Advanced mixed problems
12 Nonlinear problems
13 Fourier representation of Sobolev spaces
14 Layer potentials
15 A collection of elliptic problems
16 Curl spaces and Maxwell's equations
17 Elliptic equations on boundaries
A Review material
B Glossary
1 Distributions
2 The homogeneous Dirichlet problem
3 Lipschitz transformations and Lipschitz domains
4 The nonhomogeneous Dirichlet problem
5 Nonsymmetric and complex problems
6 Neumann boundary conditions
7 Poincare inequalities and Neumann problems
8 Compact perturbations of coercive problems
9 Eigenvalues of elliptic operators
II Extensions and Applications
10 Mixed problems
11 Advanced mixed problems
12 Nonlinear problems
13 Fourier representation of Sobolev spaces
14 Layer potentials
15 A collection of elliptic problems
16 Curl spaces and Maxwell's equations
17 Elliptic equations on boundaries
A Review material
B Glossary
I Fundamentals
1 Distributions
2 The homogeneous Dirichlet problem
3 Lipschitz transformations and Lipschitz domains
4 The nonhomogeneous Dirichlet problem
5 Nonsymmetric and complex problems
6 Neumann boundary conditions
7 Poincare inequalities and Neumann problems
8 Compact perturbations of coercive problems
9 Eigenvalues of elliptic operators
II Extensions and Applications
10 Mixed problems
11 Advanced mixed problems
12 Nonlinear problems
13 Fourier representation of Sobolev spaces
14 Layer potentials
15 A collection of elliptic problems
16 Curl spaces and Maxwell's equations
17 Elliptic equations on boundaries
A Review material
B Glossary
1 Distributions
2 The homogeneous Dirichlet problem
3 Lipschitz transformations and Lipschitz domains
4 The nonhomogeneous Dirichlet problem
5 Nonsymmetric and complex problems
6 Neumann boundary conditions
7 Poincare inequalities and Neumann problems
8 Compact perturbations of coercive problems
9 Eigenvalues of elliptic operators
II Extensions and Applications
10 Mixed problems
11 Advanced mixed problems
12 Nonlinear problems
13 Fourier representation of Sobolev spaces
14 Layer potentials
15 A collection of elliptic problems
16 Curl spaces and Maxwell's equations
17 Elliptic equations on boundaries
A Review material
B Glossary