The book's methodology and accompanying software (the extensive VGAM R package) are directed at these limitations, and this is the first time the methodology and software are covered comprehensively in one volume. Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. The demands of practical data analysis, however, require a flexibility that GLMs do not have. Data-driven GLMs, in the form of generalized additive models (GAMs), are also largelyconfined to the exponential family. This book treats distributions and classical models as generalized regression models, and the result is a much broader application base for GLMs and GAMs.
The book may be used in senior undergraduate and first-year postgraduate courses on GLMs and regression modeling, including categorical data analysis. It may also serve as a reference on vector generalized linear models and as a methodology resource for VGAM users. The methodological contribution of this book stands alone and does not require use of the VGAM package. In the second part of the book, the R package VGAM makes applications of the methodology immediate. R code is integrated in the text, and datasets are used throughout. Potential applications include ecology, finance, biostatistics, and social sciences.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The book unifies seemingly unrelated areas such as univariate distributions, categorical data analysis, quantileregression, and extremes. The underlying idea is to treat almost all distributions and classical models as generalized regression models. ... The book may be used in senior undergraduate and first-year graduate courses on GLMs and regression modeling. It may serve as a methodology resource for users of VGAMs." (Alexander G. Kukush, Mathematical Reviews, May, 2016)