Geoffrey B. Campbell
Vector Partitions, Visible Points and Ramanujan Functions (eBook, PDF)
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Geoffrey B. Campbell
Vector Partitions, Visible Points and Ramanujan Functions (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book offers a novel theory of Vector Partitions, though very much grounded in the long-established work of others, that could be developed as an extension to the existing theory of Integer Partitions. The book is suitable for graduate students in physics, applied mathematics, number theory and computational mathematics.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 14.84MB
Andere Kunden interessierten sich auch für
- Geoffrey B. CampbellVector Partitions, Visible Points and Ramanujan Functions (eBook, ePUB)52,95 €
- J. S. LomontElliptic Polynomials (eBook, PDF)65,95 €
- Saber N. ElaydiDiscrete Chaos (eBook, PDF)100,95 €
- Herbert S. Wilfgeneratingfunctionology (eBook, PDF)55,95 €
- Bernard CandelpergherRamanujan Summation of Divergent Series (eBook, PDF)44,95 €
- Lucian BezneaPotential Theory and Right Processes (eBook, PDF)40,95 €
- Istvan MezoThe Lambert W Function (eBook, PDF)59,95 €
-
-
-
This book offers a novel theory of Vector Partitions, though very much grounded in the long-established work of others, that could be developed as an extension to the existing theory of Integer Partitions. The book is suitable for graduate students in physics, applied mathematics, number theory and computational mathematics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 564
- Erscheinungstermin: 29. Mai 2024
- Englisch
- ISBN-13: 9781040026441
- Artikelnr.: 70545542
- Verlag: Taylor & Francis
- Seitenzahl: 564
- Erscheinungstermin: 29. Mai 2024
- Englisch
- ISBN-13: 9781040026441
- Artikelnr.: 70545542
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Geoffrey B. Campbell completed his PhD at Australian National University in 1998 under the esteemed physicist Professor Rodney Baxter. His affiliation with the Australian National University Mathematical Sciences Institute has continued for over 30 years. Within that time frame, Geoffrey also served eight years as an Honorary Research Fellow at LaTrobe University Mathematics and Statistics Department in Melbourne. Currently he writes ongoing articles for the Australian Mathematical Society Gazette. Within the international scope, Geoffrey currently serves as a PhD external committee member for a mathematics graduate student at Washington State University in America.
Geoffrey has built a career within Australian Commonwealth and State government departments, including as an Advisor at the Department of Prime Minister and Cabinet; as Analyst Researcher for a Royal Commission. Geoffrey specializes in complex data, machine learning including data analytics. He is also a published poet in Australian anthologies and literary magazines.
Geoffrey has built a career within Australian Commonwealth and State government departments, including as an Advisor at the Department of Prime Minister and Cabinet; as Analyst Researcher for a Royal Commission. Geoffrey specializes in complex data, machine learning including data analytics. He is also a published poet in Australian anthologies and literary magazines.
Section I. Background and History. 1. History timeline partitions. Section
II. Integer Partition Theory. 3. Integer partition generating functions. 4.
Continued fraction partition identities. 5. Partition congruences. 6.
Ferrers diagrams. 7.Durfee Squares. 8. Gaussian polynomials. 9. Plane
Partitions from MacMahon to Andrews. 10. Asymptotics for Partition
Functions. 11. Rogers-Ramanujan identities in Statistical Mechanics.
Section III. Vector Partition Theory. 12. Vector partitions and their
generating function identities. 13. Integer Partitions generalized to
Vector Partitions. 14. Weighted Vector Partitions as hybrid n-space
variations. 15. Functional Equations for n-space Vector Partitions. 16.
Binary Partitions and their Vector Generalizations. 17. n-ary Partitions
and their Vector Generalizations. 18. Some Binary and n-ary Partition
Analytic Formulas. Section IV. 19. Features of the Visible Lattice Points.
20. Visible Point Vector Identities in the first Hyperquadrant. 21. Visible
Point Vector Identities in Hyperpyramid lattices. 22. Polylogarithms, and
Parametric Euler Sum identities. 23. Visible Point Vector identities from
particular Euler sum values. 24. Visible Point Vector Identities in Skewed
Hyperpyramid lattices. 25. Harmonic Sums applied to VPV Identities. 26. The
Ramanujan trigonometric function and visible point identities. 27. Other
non-weighted n-space Vector Partition Theorems. 28. VPV Identity cases
related to some exponential relations. Section V. Models, Interpretations
and some Useful Tools. 29. 2D and 3D Stepping Stones, Forests, Orchards and
Light Diffusions. 30. Euler Products over Primes and new VPV Formulas. 31.
Determinants, Bell Polynomial Expansions for Vector Partitions. 32.
Glossary.
II. Integer Partition Theory. 3. Integer partition generating functions. 4.
Continued fraction partition identities. 5. Partition congruences. 6.
Ferrers diagrams. 7.Durfee Squares. 8. Gaussian polynomials. 9. Plane
Partitions from MacMahon to Andrews. 10. Asymptotics for Partition
Functions. 11. Rogers-Ramanujan identities in Statistical Mechanics.
Section III. Vector Partition Theory. 12. Vector partitions and their
generating function identities. 13. Integer Partitions generalized to
Vector Partitions. 14. Weighted Vector Partitions as hybrid n-space
variations. 15. Functional Equations for n-space Vector Partitions. 16.
Binary Partitions and their Vector Generalizations. 17. n-ary Partitions
and their Vector Generalizations. 18. Some Binary and n-ary Partition
Analytic Formulas. Section IV. 19. Features of the Visible Lattice Points.
20. Visible Point Vector Identities in the first Hyperquadrant. 21. Visible
Point Vector Identities in Hyperpyramid lattices. 22. Polylogarithms, and
Parametric Euler Sum identities. 23. Visible Point Vector identities from
particular Euler sum values. 24. Visible Point Vector Identities in Skewed
Hyperpyramid lattices. 25. Harmonic Sums applied to VPV Identities. 26. The
Ramanujan trigonometric function and visible point identities. 27. Other
non-weighted n-space Vector Partition Theorems. 28. VPV Identity cases
related to some exponential relations. Section V. Models, Interpretations
and some Useful Tools. 29. 2D and 3D Stepping Stones, Forests, Orchards and
Light Diffusions. 30. Euler Products over Primes and new VPV Formulas. 31.
Determinants, Bell Polynomial Expansions for Vector Partitions. 32.
Glossary.
Section I. Background and History. 1. History timeline partitions. Section
II. Integer Partition Theory. 3. Integer partition generating functions. 4.
Continued fraction partition identities. 5. Partition congruences. 6.
Ferrers diagrams. 7.Durfee Squares. 8. Gaussian polynomials. 9. Plane
Partitions from MacMahon to Andrews. 10. Asymptotics for Partition
Functions. 11. Rogers-Ramanujan identities in Statistical Mechanics.
Section III. Vector Partition Theory. 12. Vector partitions and their
generating function identities. 13. Integer Partitions generalized to
Vector Partitions. 14. Weighted Vector Partitions as hybrid n-space
variations. 15. Functional Equations for n-space Vector Partitions. 16.
Binary Partitions and their Vector Generalizations. 17. n-ary Partitions
and their Vector Generalizations. 18. Some Binary and n-ary Partition
Analytic Formulas. Section IV. 19. Features of the Visible Lattice Points.
20. Visible Point Vector Identities in the first Hyperquadrant. 21. Visible
Point Vector Identities in Hyperpyramid lattices. 22. Polylogarithms, and
Parametric Euler Sum identities. 23. Visible Point Vector identities from
particular Euler sum values. 24. Visible Point Vector Identities in Skewed
Hyperpyramid lattices. 25. Harmonic Sums applied to VPV Identities. 26. The
Ramanujan trigonometric function and visible point identities. 27. Other
non-weighted n-space Vector Partition Theorems. 28. VPV Identity cases
related to some exponential relations. Section V. Models, Interpretations
and some Useful Tools. 29. 2D and 3D Stepping Stones, Forests, Orchards and
Light Diffusions. 30. Euler Products over Primes and new VPV Formulas. 31.
Determinants, Bell Polynomial Expansions for Vector Partitions. 32.
Glossary.
II. Integer Partition Theory. 3. Integer partition generating functions. 4.
Continued fraction partition identities. 5. Partition congruences. 6.
Ferrers diagrams. 7.Durfee Squares. 8. Gaussian polynomials. 9. Plane
Partitions from MacMahon to Andrews. 10. Asymptotics for Partition
Functions. 11. Rogers-Ramanujan identities in Statistical Mechanics.
Section III. Vector Partition Theory. 12. Vector partitions and their
generating function identities. 13. Integer Partitions generalized to
Vector Partitions. 14. Weighted Vector Partitions as hybrid n-space
variations. 15. Functional Equations for n-space Vector Partitions. 16.
Binary Partitions and their Vector Generalizations. 17. n-ary Partitions
and their Vector Generalizations. 18. Some Binary and n-ary Partition
Analytic Formulas. Section IV. 19. Features of the Visible Lattice Points.
20. Visible Point Vector Identities in the first Hyperquadrant. 21. Visible
Point Vector Identities in Hyperpyramid lattices. 22. Polylogarithms, and
Parametric Euler Sum identities. 23. Visible Point Vector identities from
particular Euler sum values. 24. Visible Point Vector Identities in Skewed
Hyperpyramid lattices. 25. Harmonic Sums applied to VPV Identities. 26. The
Ramanujan trigonometric function and visible point identities. 27. Other
non-weighted n-space Vector Partition Theorems. 28. VPV Identity cases
related to some exponential relations. Section V. Models, Interpretations
and some Useful Tools. 29. 2D and 3D Stepping Stones, Forests, Orchards and
Light Diffusions. 30. Euler Products over Primes and new VPV Formulas. 31.
Determinants, Bell Polynomial Expansions for Vector Partitions. 32.
Glossary.