Vibration Theory and Applications with Finite Elements and Active Vibration Control (eBook, PDF)
Alle Infos zum eBook verschenken
Vibration Theory and Applications with Finite Elements and Active Vibration Control (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Based on many years of research and teaching, this book brings together all the important topics in linear vibration theory, including failure models, kinematics and modeling, unstable vibrating systems, rotordynamics, model reduction methods, and finite element methods utilizing truss, beam, membrane and solid elements. It also explores in detail active vibration control, instability and modal analysis. The book provides the modeling skills and knowledge required for modern engineering practice, plus the tools needed to identify, formulate and solve engineering problems effectively.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 28.18MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 973
- Erscheinungstermin: 11. Januar 2016
- Englisch
- ISBN-13: 9781118404263
- Artikelnr.: 44503444
- Verlag: John Wiley & Sons
- Seitenzahl: 973
- Erscheinungstermin: 11. Januar 2016
- Englisch
- ISBN-13: 9781118404263
- Artikelnr.: 44503444
n 541 7.3.6 Experimental Parameter Identification: Receptances 543 7.3.7 Steady-State Harmonic Response of a Jeffcott Rotor and Rotor Balancing 545 7.3.8 Single Plane Influence Coefficient Balancing 549 7.3.9 Related American Petroleum Institute Standards for Balancing 551 7.3.10 Response of an SDOF Oscillator to Nonsinusoidal, Periodic Excitation 552 7.3.11 Forced Harmonic Response with Elastomeric Stiffness and Damping 556 7.4 Two Degree of Freedom Response 559 7.4.1 Vibration Absorber: Principles 560 7.4.2 Vibration Absorber: Mass Ratio Effect 563 7.5 N Degree of freedom Steady-State Harmonic Response 566 7.5.1 Direct Approach 566 7.5.2 Modal Approach 570 7.5.3 Receptances 572 7.5.4 Receptance-Based Synthesis 575 7.5.5 Dominance of a Single Mode in the Steady-State Harmonic Response 577 7.5.6 Receptance-Based Modal Parameter Identification: Method I 578 7.5.7 Receptance-Based Modal Parameter Identification: Method II 585 7.5.8 Modal Assurance Criterion for Mode Shape Correlation 590 7.6 Other Phasor Ratio Measures of Steady-State Harmonic Response 591 7.7 Summary 593 7.8 Chapter 7 Exercises 593 7.8.1 Exercise Location 593 7.8.2 Exercise Goals 594 7.8.3 Sample Exercises: 7.9 and 7.23 594 References 594 8 Approximate Methods for Large-Order Systems 595 8.1 Introduction 595 8.2 Guyan Reduction: Static Condensation 596 8.3 Substructures: Superelements 608 8.4 Modal Synthesis 609 8.4.1 Uncoupled System Equations 610 8.4.2 Coupled System Equations: Displacement Compatibility at Junction 611 8.4.3 Coupled System Equations: Subspace Condensation 611 8.5 Eigenvalue/Natural Frequency Changes for Perturbed Systems 620 8.5.1 Undamped, Nongyroscopic, Noncirculatory M and K Type Systems 620 8.5.2 Orthogonally Damped Systems 624 8.5.3 Rayleigh's Quotient 631 8.6 Summary 633 8.7 Chapter 8 Exercises 634 8.7.1 Exercise Location 634 8.7.2 Exercise Goals 634 8.7.3 Sample Exercises 8.4 and 8.13 634 References 635 9 Beam Finite Elements for Vibration Analysis 637 9.1 Introduction 637 9.2 Modeling 2D Frame Structures with Euler-Bernoulli Beam Elements 637 9.2.1 2D Frame Element Stiffness Matrix and Strain Energy: Transverse Deflection 639 9.2.2 2D Frame Element Stiffness Matrix and Strain Energy: Axial Deflection 641 9.2.3 2D Frame Element Stiffness Matrix and Strain Energy 642 9.2.4 2D Frame Element Mass Matrix 642 9.2.5 2D Frame Element Force Vector 644 9.2.6 2D Frame Element Stiffness and Mass Matrices and Force Vector: Transformation to Global Coordinates 646 9.2.7 2D Frame: Beam Element Assembly Algorithm 654 9.2.8 Imposed Support Excitation Modeling 666 9.3 Three-Dimensional Timoshenko Beam Elements: Introduction 670 9.4 3D Timoshenko Beam Elements: Nodal Coordinates 672 9.5 3D Timoshenko Beam Elements: Shape Functions, Element Stiffness, and Mass Matrices 679 9.5.1 Strain-Displacement Relations and Shear Form Factors 681 9.5.2 x1
x2 Plane, Translational Differential Equations, Shape Functions, and Stiffness and Mass Matrices 684 9.5.3 x1
x3 Plane, Translational Differential Equations, Shape Functions, and Stiffness and Mass Matrices 691 9.5.4 Axial (Longitudinal) x1 Differential Equation, Shape Functions, and Stiffness and Mass Matrices 696 9.5.5 Torsional
1 Differential Equation, Shape Functions, and Stiffness and Mass Matrices 698 9.5.6 Twelve-Dof Element Stiffness Matrix 700 9.5.7 Twelve-Dof Element Mass Matrix 703 9.6 3D Timoshenko Beam Element Force Vectors 704 9.6.1 Axial Loads 706 9.6.2 Torsional Loads 706 9.6.3 x1
x2 Plane Loads 707 9.6.4 x1
x3 Plane Loads 709 9.6.5 Element Load Vector 711 9.7 3D Frame: Beam Element Assembly Algorithm 713 9.8 2D Frame Modeling with Timoshenko Beam Elements 725 9.9 Summary 748 9.10 Chapter 9 Exercises 749 9.10.1 Exercise Location 749 9.10.2 Exercise Goals 749 9.10.3 Sample Exercises: 9.4 and 9.15a 749 References 750 10 2D Planar Finite Elements for Vibration Analysis 751 10.1 Introduction 751 10.2 Plane Strain (P
) 751 10.3 Plane Stress (P
) 753 10.4 Plane Stress and Plane Strain: Element Stiffness and Mass Matrices and Force Vector 754 10.4.1 External Forces 760 10.4.2 Concentrated Forces 760 10.4.3 General Volumetric Loading 761 10.4.4 Edge Loads 762 10.5 Assembly Procedure for 2D, 4-Node, Quadrilateral Elements 763 10.6 Computation of Stresses in 2D Solid Elements 768 10.6.1 Interior Stress Determination 768 10.6.2 Surface Stresses 770 10.7 Extra Shape Functions to Improve Accuracy 774 10.8 Illustrative Example 776 10.9 2D Axisymmetric Model 786 10.9.1 Axisymmetric Model Stresses and Strains 786 10.9.2 4-Node, Bilinear Axisymmetric Element 788 10.10 Automated Mesh Generation: Constant Strain Triangle Elements 801 10.10.1 Element Stiffness Matrix 803 10.10.2 Element Mass Matrix 803 10.10.3 System Matrix Assembly 804 10.11 Membranes 810 10.11.1 Kinetic Energy and Element Mass Matrix 810 10.11.2 Strain Potential Energy and Element Stiffness Matrix 811 10.11.3 Matrix Assembly 812 10.12 Banded Storage 815 10.13 Chapter 10 Exercises 820 10.13.1 Exercise Location 820 10.13.2 Exercise Goals 821 10.13.3 Sample Exercises: 10.5 and 10.8 821 References 822 11 3D Solid Elements for Vibration Analysis 823 11.1 Introduction 823 11.2 Element Stiffness Matrix 825 11.2.1 Shape Functions 825 11.2.2 Element Stiffness Matrix Integral and Summation Forms 828 11.3 The Element Mass Matrix and Force Vector 835 11.3.1 Element Mass Matrix 836 11.3.2 Element External Force Vector 836 11.3.3 Force Vector: Concentrated Nodal Forces 837 11.3.4 Force Vector: Volumetric Loads 838 11.3.5 Force Vector: Face Loading 839 11.4 Assembly Procedure for the 3D, 8-Node, Hexahedral Element Model 842 11.5 Computation of Stresses for a 3D Hexahedral Solid Element 846 11.5.1 Computation of Interior Stress 846 11.5.2 Computation of Surface Stresses 848 11.5.3 Coordinate Transformation 849 11.5.4 Geometry Mapping in Surface Tangent Coordinates 850 11.5.5 Displacements in the Surface Tangent Coordinate System 851 11.5.6 Strains in the Surface Tangent Coordinate System 851 11.5.7 Surface Stresses Obtained from Cauchy's Boundary Formula 852 11.5.8 Surface Stresses Obtained from the Constitutive Law and Surface Strains 853 11.5.9 Summary of Surface Stress Computation 854 11.6 3D Solid Element Model Example 856 11.7 3D Solid Element Summary 864 11.8 Chapter 11 Exercises 865 11.8.1 Exercise Location 865 11.8.2 Exercise Goals 865 11.8.3 Sample Exercises: 11.2 and 11.3 865 References 866 12 Active Vibration Control 867 12.1 Introduction 867 12.2 AVC System Modeling 871 12.3 AVC Actuator Modeling 874 12.4 System Model with an Infinite Bandwidth Feedback Approximation 878 12.4.1 Closed-Loop Feedback Controlled System Model 882 12.5 System Model with Finite Bandwidth Feedback 886 12.6 System Model with Finite Bandwidth Feedback and Lead Compensation 893 12.6.1 Transfer Function Approach 893 12.6.2 State Space Approach 897 12.7 Sensor/Actuator Noncollocation Effect on Vibration Stability 901 12.8 Piezoelectric Actuators 907 12.8.1 Piezoelectric Stack Actuator 908 12.8.2 Piezoelectric Layer (Patch) Actuator 915 12.9 Summary 923 12.10 Chapter 12 Exercises 923 12.10.1 Exercise Location 923 12.10.2 Exercise Goals 923 12.10.3 Sample Exercise: 12.1 923 References 924 Appendix A Fundamental Equations of Elasticity 927 Index 941
n 541 7.3.6 Experimental Parameter Identification: Receptances 543 7.3.7 Steady-State Harmonic Response of a Jeffcott Rotor and Rotor Balancing 545 7.3.8 Single Plane Influence Coefficient Balancing 549 7.3.9 Related American Petroleum Institute Standards for Balancing 551 7.3.10 Response of an SDOF Oscillator to Nonsinusoidal, Periodic Excitation 552 7.3.11 Forced Harmonic Response with Elastomeric Stiffness and Damping 556 7.4 Two Degree of Freedom Response 559 7.4.1 Vibration Absorber: Principles 560 7.4.2 Vibration Absorber: Mass Ratio Effect 563 7.5 N Degree of freedom Steady-State Harmonic Response 566 7.5.1 Direct Approach 566 7.5.2 Modal Approach 570 7.5.3 Receptances 572 7.5.4 Receptance-Based Synthesis 575 7.5.5 Dominance of a Single Mode in the Steady-State Harmonic Response 577 7.5.6 Receptance-Based Modal Parameter Identification: Method I 578 7.5.7 Receptance-Based Modal Parameter Identification: Method II 585 7.5.8 Modal Assurance Criterion for Mode Shape Correlation 590 7.6 Other Phasor Ratio Measures of Steady-State Harmonic Response 591 7.7 Summary 593 7.8 Chapter 7 Exercises 593 7.8.1 Exercise Location 593 7.8.2 Exercise Goals 594 7.8.3 Sample Exercises: 7.9 and 7.23 594 References 594 8 Approximate Methods for Large-Order Systems 595 8.1 Introduction 595 8.2 Guyan Reduction: Static Condensation 596 8.3 Substructures: Superelements 608 8.4 Modal Synthesis 609 8.4.1 Uncoupled System Equations 610 8.4.2 Coupled System Equations: Displacement Compatibility at Junction 611 8.4.3 Coupled System Equations: Subspace Condensation 611 8.5 Eigenvalue/Natural Frequency Changes for Perturbed Systems 620 8.5.1 Undamped, Nongyroscopic, Noncirculatory M and K Type Systems 620 8.5.2 Orthogonally Damped Systems 624 8.5.3 Rayleigh's Quotient 631 8.6 Summary 633 8.7 Chapter 8 Exercises 634 8.7.1 Exercise Location 634 8.7.2 Exercise Goals 634 8.7.3 Sample Exercises 8.4 and 8.13 634 References 635 9 Beam Finite Elements for Vibration Analysis 637 9.1 Introduction 637 9.2 Modeling 2D Frame Structures with Euler-Bernoulli Beam Elements 637 9.2.1 2D Frame Element Stiffness Matrix and Strain Energy: Transverse Deflection 639 9.2.2 2D Frame Element Stiffness Matrix and Strain Energy: Axial Deflection 641 9.2.3 2D Frame Element Stiffness Matrix and Strain Energy 642 9.2.4 2D Frame Element Mass Matrix 642 9.2.5 2D Frame Element Force Vector 644 9.2.6 2D Frame Element Stiffness and Mass Matrices and Force Vector: Transformation to Global Coordinates 646 9.2.7 2D Frame: Beam Element Assembly Algorithm 654 9.2.8 Imposed Support Excitation Modeling 666 9.3 Three-Dimensional Timoshenko Beam Elements: Introduction 670 9.4 3D Timoshenko Beam Elements: Nodal Coordinates 672 9.5 3D Timoshenko Beam Elements: Shape Functions, Element Stiffness, and Mass Matrices 679 9.5.1 Strain-Displacement Relations and Shear Form Factors 681 9.5.2 x1
x2 Plane, Translational Differential Equations, Shape Functions, and Stiffness and Mass Matrices 684 9.5.3 x1
x3 Plane, Translational Differential Equations, Shape Functions, and Stiffness and Mass Matrices 691 9.5.4 Axial (Longitudinal) x1 Differential Equation, Shape Functions, and Stiffness and Mass Matrices 696 9.5.5 Torsional
1 Differential Equation, Shape Functions, and Stiffness and Mass Matrices 698 9.5.6 Twelve-Dof Element Stiffness Matrix 700 9.5.7 Twelve-Dof Element Mass Matrix 703 9.6 3D Timoshenko Beam Element Force Vectors 704 9.6.1 Axial Loads 706 9.6.2 Torsional Loads 706 9.6.3 x1
x2 Plane Loads 707 9.6.4 x1
x3 Plane Loads 709 9.6.5 Element Load Vector 711 9.7 3D Frame: Beam Element Assembly Algorithm 713 9.8 2D Frame Modeling with Timoshenko Beam Elements 725 9.9 Summary 748 9.10 Chapter 9 Exercises 749 9.10.1 Exercise Location 749 9.10.2 Exercise Goals 749 9.10.3 Sample Exercises: 9.4 and 9.15a 749 References 750 10 2D Planar Finite Elements for Vibration Analysis 751 10.1 Introduction 751 10.2 Plane Strain (P
) 751 10.3 Plane Stress (P
) 753 10.4 Plane Stress and Plane Strain: Element Stiffness and Mass Matrices and Force Vector 754 10.4.1 External Forces 760 10.4.2 Concentrated Forces 760 10.4.3 General Volumetric Loading 761 10.4.4 Edge Loads 762 10.5 Assembly Procedure for 2D, 4-Node, Quadrilateral Elements 763 10.6 Computation of Stresses in 2D Solid Elements 768 10.6.1 Interior Stress Determination 768 10.6.2 Surface Stresses 770 10.7 Extra Shape Functions to Improve Accuracy 774 10.8 Illustrative Example 776 10.9 2D Axisymmetric Model 786 10.9.1 Axisymmetric Model Stresses and Strains 786 10.9.2 4-Node, Bilinear Axisymmetric Element 788 10.10 Automated Mesh Generation: Constant Strain Triangle Elements 801 10.10.1 Element Stiffness Matrix 803 10.10.2 Element Mass Matrix 803 10.10.3 System Matrix Assembly 804 10.11 Membranes 810 10.11.1 Kinetic Energy and Element Mass Matrix 810 10.11.2 Strain Potential Energy and Element Stiffness Matrix 811 10.11.3 Matrix Assembly 812 10.12 Banded Storage 815 10.13 Chapter 10 Exercises 820 10.13.1 Exercise Location 820 10.13.2 Exercise Goals 821 10.13.3 Sample Exercises: 10.5 and 10.8 821 References 822 11 3D Solid Elements for Vibration Analysis 823 11.1 Introduction 823 11.2 Element Stiffness Matrix 825 11.2.1 Shape Functions 825 11.2.2 Element Stiffness Matrix Integral and Summation Forms 828 11.3 The Element Mass Matrix and Force Vector 835 11.3.1 Element Mass Matrix 836 11.3.2 Element External Force Vector 836 11.3.3 Force Vector: Concentrated Nodal Forces 837 11.3.4 Force Vector: Volumetric Loads 838 11.3.5 Force Vector: Face Loading 839 11.4 Assembly Procedure for the 3D, 8-Node, Hexahedral Element Model 842 11.5 Computation of Stresses for a 3D Hexahedral Solid Element 846 11.5.1 Computation of Interior Stress 846 11.5.2 Computation of Surface Stresses 848 11.5.3 Coordinate Transformation 849 11.5.4 Geometry Mapping in Surface Tangent Coordinates 850 11.5.5 Displacements in the Surface Tangent Coordinate System 851 11.5.6 Strains in the Surface Tangent Coordinate System 851 11.5.7 Surface Stresses Obtained from Cauchy's Boundary Formula 852 11.5.8 Surface Stresses Obtained from the Constitutive Law and Surface Strains 853 11.5.9 Summary of Surface Stress Computation 854 11.6 3D Solid Element Model Example 856 11.7 3D Solid Element Summary 864 11.8 Chapter 11 Exercises 865 11.8.1 Exercise Location 865 11.8.2 Exercise Goals 865 11.8.3 Sample Exercises: 11.2 and 11.3 865 References 866 12 Active Vibration Control 867 12.1 Introduction 867 12.2 AVC System Modeling 871 12.3 AVC Actuator Modeling 874 12.4 System Model with an Infinite Bandwidth Feedback Approximation 878 12.4.1 Closed-Loop Feedback Controlled System Model 882 12.5 System Model with Finite Bandwidth Feedback 886 12.6 System Model with Finite Bandwidth Feedback and Lead Compensation 893 12.6.1 Transfer Function Approach 893 12.6.2 State Space Approach 897 12.7 Sensor/Actuator Noncollocation Effect on Vibration Stability 901 12.8 Piezoelectric Actuators 907 12.8.1 Piezoelectric Stack Actuator 908 12.8.2 Piezoelectric Layer (Patch) Actuator 915 12.9 Summary 923 12.10 Chapter 12 Exercises 923 12.10.1 Exercise Location 923 12.10.2 Exercise Goals 923 12.10.3 Sample Exercise: 12.1 923 References 924 Appendix A Fundamental Equations of Elasticity 927 Index 941