Ashish Kumar
Visual Object Tracking using Deep Learning (eBook, PDF)
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Ashish Kumar
Visual Object Tracking using Deep Learning (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The text comprehensively discusses tracking architecture under stochastic and deterministic frameworks and presents experimental results under each framework with qualitative and quantitative analysis. It covers deep learning techniques for feature extraction, template matching, and training the networks in tracking algorithms.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 20.33MB
Andere Kunden interessierten sich auch für
- Ashish KumarVisual Object Tracking using Deep Learning (eBook, ePUB)52,95 €
- Junzhi YuVisual Perception and Control of Underwater Robots (eBook, PDF)48,95 €
- Internet of Things enabled Machine Learning for Biomedical Applications (eBook, PDF)52,95 €
- Image Processing and Intelligent Computing Systems (eBook, PDF)47,95 €
- Venkatesan RajinikanthA Beginner's Guide to Multilevel Image Thresholding (eBook, PDF)60,95 €
- Internet of Drones (eBook, PDF)52,95 €
- Applications of Computational Intelligence Techniques in Communications (eBook, PDF)52,95 €
-
-
-
The text comprehensively discusses tracking architecture under stochastic and deterministic frameworks and presents experimental results under each framework with qualitative and quantitative analysis. It covers deep learning techniques for feature extraction, template matching, and training the networks in tracking algorithms.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 216
- Erscheinungstermin: 20. November 2023
- Englisch
- ISBN-13: 9781000990980
- Artikelnr.: 69083285
- Verlag: Taylor & Francis
- Seitenzahl: 216
- Erscheinungstermin: 20. November 2023
- Englisch
- ISBN-13: 9781000990980
- Artikelnr.: 69083285
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Ashish Kumar, Ph.D., is working as an assistant professor with Bennett University, Greater Noida, U.P., India. He has completed his Ph.D. in Computer Science and Engineering from Delhi Technological University (formerly DCE), New Delhi, India in 2020. He has received best researcher award from the Delhi Technological University for his contribution in the computer vision domain. He has completed M.Tech with distinction in computer Science and Engineering from GGS Inderpratha University, New Delhi. He has published many research papers in various reputed national and international journals and conferences. His current research interests include object tracking, image processing, artificial intelligence, and medical imaging analysis.
Chapter 1
Introduction to visual tracking in video sequences
1.1 Overview of visual tracking in video sequences
1.2 Motivation and challenges
1.3 Real-time applications of visual tracking
1.4 Emergence from the conventional to deep learning approaches
1.5 Performance evaluation criteria
1.6 Summary
Chapter 2
Background and research orientation for visual tracking appearance model:
Standards and Models
2.1 Background and preliminaries
2.2 Conventional tracking methods
2.3 Deep learning-based methods
2.4 Correlation filter based visual trackers
2.5 Summary
Chapter 3
Target feature extraction for robust appearance model
3.1. Saliency feature extraction for visual tracking
3.2 Handcrafted features
3.3 Deep learning for feature extraction
3.4 Multi-feature fusion for efficient tracking
3.5 Summary
Chapter 4
Performance metrics for visual tracking: A Qualitative and Quantitative
analysis
4.1 Introduction
4.2 Performance metrics for tracker evaluation
4.3 Performance metrics without ground truth
4.4 Performance metrics with ground truth
4.5 Summary
Chapter 5
Visual tracking datasets: Benchmark for Evaluation
5.1 Introduction
5.2 Problem with the self-generated datasets
5.3 Salient features of visual tracking public datasets
Chapter 6
Conventional framework for visual tracking: Challenges and solutions
6.1 Introduction
6.2 Deterministic tracking approach
6.2.1 Meanshift and its variant-based trackers
6.2.2 Multi-modal deterministic approach
6.3 Generative tracking approach
6.4 Discriminative tracking approach
6.5 Summary
Chapter 7
Stochastic framework for visual tracking: Challenges and Solutions
7.1 Introduction
7.2 Particle filter for visual tracking
7.3 Framework and procedure
7.4 Fusion of multi-feature and State estimation
7.5 Experimental Validation of the particle filter based tracker
7.6 Discussion on PF-variants based tracking
7.7 Summary
Chapter 8
Multi-stage and collaborative framework for visual tracking
8.1 Introduction
8.2 Multi-stage tracking algorithms
8.3 Framework and procedures
8.4 Collaborative tracking algorithms
8.5 Summary
Chapter 9
Deep learning based visual tracking model: A paradigm shift
9.1 Introduction
9.2 Deep learning-based tracking framework
9.3 Hyper-feature based deep learning networks
9.4 Multi-modal based deep learning trackers
9.5 Summary
Chapter 10
Correlation filter-based visual tracking model: Emergence and upgradation
10.1 Introduction
10.2 Correlation filter-based tracking framework
10.3 Deep Correlation Filter based trackers
10.4 Fusion-based correlation filter trackers
10.5 Discussion on correlation filter-based trackers
10.6 Summary
Chapter 11
Future prospects of visual tracking: Application Specific Analysis
11.1 Introduction
11.2 Pruning for deep neural architecture
11.3 Explainable AI
11.4 Application-specific visual tracking
11.6 Summary
Chapter 12
Deep learning-based multi-object tracking: Advancement for intelligent
video analysis
12.1 Introduction
12.2 Multi-object tracking algorithms
12.3 Evaluation metrics for performance analysis
12.4 Benchmark for performance evaluation
12.5 Application of MOT algorithms
12.6 Limitations of existing MOT algorithms
12.7 Summary
Introduction to visual tracking in video sequences
1.1 Overview of visual tracking in video sequences
1.2 Motivation and challenges
1.3 Real-time applications of visual tracking
1.4 Emergence from the conventional to deep learning approaches
1.5 Performance evaluation criteria
1.6 Summary
Chapter 2
Background and research orientation for visual tracking appearance model:
Standards and Models
2.1 Background and preliminaries
2.2 Conventional tracking methods
2.3 Deep learning-based methods
2.4 Correlation filter based visual trackers
2.5 Summary
Chapter 3
Target feature extraction for robust appearance model
3.1. Saliency feature extraction for visual tracking
3.2 Handcrafted features
3.3 Deep learning for feature extraction
3.4 Multi-feature fusion for efficient tracking
3.5 Summary
Chapter 4
Performance metrics for visual tracking: A Qualitative and Quantitative
analysis
4.1 Introduction
4.2 Performance metrics for tracker evaluation
4.3 Performance metrics without ground truth
4.4 Performance metrics with ground truth
4.5 Summary
Chapter 5
Visual tracking datasets: Benchmark for Evaluation
5.1 Introduction
5.2 Problem with the self-generated datasets
5.3 Salient features of visual tracking public datasets
Chapter 6
Conventional framework for visual tracking: Challenges and solutions
6.1 Introduction
6.2 Deterministic tracking approach
6.2.1 Meanshift and its variant-based trackers
6.2.2 Multi-modal deterministic approach
6.3 Generative tracking approach
6.4 Discriminative tracking approach
6.5 Summary
Chapter 7
Stochastic framework for visual tracking: Challenges and Solutions
7.1 Introduction
7.2 Particle filter for visual tracking
7.3 Framework and procedure
7.4 Fusion of multi-feature and State estimation
7.5 Experimental Validation of the particle filter based tracker
7.6 Discussion on PF-variants based tracking
7.7 Summary
Chapter 8
Multi-stage and collaborative framework for visual tracking
8.1 Introduction
8.2 Multi-stage tracking algorithms
8.3 Framework and procedures
8.4 Collaborative tracking algorithms
8.5 Summary
Chapter 9
Deep learning based visual tracking model: A paradigm shift
9.1 Introduction
9.2 Deep learning-based tracking framework
9.3 Hyper-feature based deep learning networks
9.4 Multi-modal based deep learning trackers
9.5 Summary
Chapter 10
Correlation filter-based visual tracking model: Emergence and upgradation
10.1 Introduction
10.2 Correlation filter-based tracking framework
10.3 Deep Correlation Filter based trackers
10.4 Fusion-based correlation filter trackers
10.5 Discussion on correlation filter-based trackers
10.6 Summary
Chapter 11
Future prospects of visual tracking: Application Specific Analysis
11.1 Introduction
11.2 Pruning for deep neural architecture
11.3 Explainable AI
11.4 Application-specific visual tracking
11.6 Summary
Chapter 12
Deep learning-based multi-object tracking: Advancement for intelligent
video analysis
12.1 Introduction
12.2 Multi-object tracking algorithms
12.3 Evaluation metrics for performance analysis
12.4 Benchmark for performance evaluation
12.5 Application of MOT algorithms
12.6 Limitations of existing MOT algorithms
12.7 Summary
Chapter 1
Introduction to visual tracking in video sequences
1.1 Overview of visual tracking in video sequences
1.2 Motivation and challenges
1.3 Real-time applications of visual tracking
1.4 Emergence from the conventional to deep learning approaches
1.5 Performance evaluation criteria
1.6 Summary
Chapter 2
Background and research orientation for visual tracking appearance model:
Standards and Models
2.1 Background and preliminaries
2.2 Conventional tracking methods
2.3 Deep learning-based methods
2.4 Correlation filter based visual trackers
2.5 Summary
Chapter 3
Target feature extraction for robust appearance model
3.1. Saliency feature extraction for visual tracking
3.2 Handcrafted features
3.3 Deep learning for feature extraction
3.4 Multi-feature fusion for efficient tracking
3.5 Summary
Chapter 4
Performance metrics for visual tracking: A Qualitative and Quantitative
analysis
4.1 Introduction
4.2 Performance metrics for tracker evaluation
4.3 Performance metrics without ground truth
4.4 Performance metrics with ground truth
4.5 Summary
Chapter 5
Visual tracking datasets: Benchmark for Evaluation
5.1 Introduction
5.2 Problem with the self-generated datasets
5.3 Salient features of visual tracking public datasets
Chapter 6
Conventional framework for visual tracking: Challenges and solutions
6.1 Introduction
6.2 Deterministic tracking approach
6.2.1 Meanshift and its variant-based trackers
6.2.2 Multi-modal deterministic approach
6.3 Generative tracking approach
6.4 Discriminative tracking approach
6.5 Summary
Chapter 7
Stochastic framework for visual tracking: Challenges and Solutions
7.1 Introduction
7.2 Particle filter for visual tracking
7.3 Framework and procedure
7.4 Fusion of multi-feature and State estimation
7.5 Experimental Validation of the particle filter based tracker
7.6 Discussion on PF-variants based tracking
7.7 Summary
Chapter 8
Multi-stage and collaborative framework for visual tracking
8.1 Introduction
8.2 Multi-stage tracking algorithms
8.3 Framework and procedures
8.4 Collaborative tracking algorithms
8.5 Summary
Chapter 9
Deep learning based visual tracking model: A paradigm shift
9.1 Introduction
9.2 Deep learning-based tracking framework
9.3 Hyper-feature based deep learning networks
9.4 Multi-modal based deep learning trackers
9.5 Summary
Chapter 10
Correlation filter-based visual tracking model: Emergence and upgradation
10.1 Introduction
10.2 Correlation filter-based tracking framework
10.3 Deep Correlation Filter based trackers
10.4 Fusion-based correlation filter trackers
10.5 Discussion on correlation filter-based trackers
10.6 Summary
Chapter 11
Future prospects of visual tracking: Application Specific Analysis
11.1 Introduction
11.2 Pruning for deep neural architecture
11.3 Explainable AI
11.4 Application-specific visual tracking
11.6 Summary
Chapter 12
Deep learning-based multi-object tracking: Advancement for intelligent
video analysis
12.1 Introduction
12.2 Multi-object tracking algorithms
12.3 Evaluation metrics for performance analysis
12.4 Benchmark for performance evaluation
12.5 Application of MOT algorithms
12.6 Limitations of existing MOT algorithms
12.7 Summary
Introduction to visual tracking in video sequences
1.1 Overview of visual tracking in video sequences
1.2 Motivation and challenges
1.3 Real-time applications of visual tracking
1.4 Emergence from the conventional to deep learning approaches
1.5 Performance evaluation criteria
1.6 Summary
Chapter 2
Background and research orientation for visual tracking appearance model:
Standards and Models
2.1 Background and preliminaries
2.2 Conventional tracking methods
2.3 Deep learning-based methods
2.4 Correlation filter based visual trackers
2.5 Summary
Chapter 3
Target feature extraction for robust appearance model
3.1. Saliency feature extraction for visual tracking
3.2 Handcrafted features
3.3 Deep learning for feature extraction
3.4 Multi-feature fusion for efficient tracking
3.5 Summary
Chapter 4
Performance metrics for visual tracking: A Qualitative and Quantitative
analysis
4.1 Introduction
4.2 Performance metrics for tracker evaluation
4.3 Performance metrics without ground truth
4.4 Performance metrics with ground truth
4.5 Summary
Chapter 5
Visual tracking datasets: Benchmark for Evaluation
5.1 Introduction
5.2 Problem with the self-generated datasets
5.3 Salient features of visual tracking public datasets
Chapter 6
Conventional framework for visual tracking: Challenges and solutions
6.1 Introduction
6.2 Deterministic tracking approach
6.2.1 Meanshift and its variant-based trackers
6.2.2 Multi-modal deterministic approach
6.3 Generative tracking approach
6.4 Discriminative tracking approach
6.5 Summary
Chapter 7
Stochastic framework for visual tracking: Challenges and Solutions
7.1 Introduction
7.2 Particle filter for visual tracking
7.3 Framework and procedure
7.4 Fusion of multi-feature and State estimation
7.5 Experimental Validation of the particle filter based tracker
7.6 Discussion on PF-variants based tracking
7.7 Summary
Chapter 8
Multi-stage and collaborative framework for visual tracking
8.1 Introduction
8.2 Multi-stage tracking algorithms
8.3 Framework and procedures
8.4 Collaborative tracking algorithms
8.5 Summary
Chapter 9
Deep learning based visual tracking model: A paradigm shift
9.1 Introduction
9.2 Deep learning-based tracking framework
9.3 Hyper-feature based deep learning networks
9.4 Multi-modal based deep learning trackers
9.5 Summary
Chapter 10
Correlation filter-based visual tracking model: Emergence and upgradation
10.1 Introduction
10.2 Correlation filter-based tracking framework
10.3 Deep Correlation Filter based trackers
10.4 Fusion-based correlation filter trackers
10.5 Discussion on correlation filter-based trackers
10.6 Summary
Chapter 11
Future prospects of visual tracking: Application Specific Analysis
11.1 Introduction
11.2 Pruning for deep neural architecture
11.3 Explainable AI
11.4 Application-specific visual tracking
11.6 Summary
Chapter 12
Deep learning-based multi-object tracking: Advancement for intelligent
video analysis
12.1 Introduction
12.2 Multi-object tracking algorithms
12.3 Evaluation metrics for performance analysis
12.4 Benchmark for performance evaluation
12.5 Application of MOT algorithms
12.6 Limitations of existing MOT algorithms
12.7 Summary