Adalbert Duschek
Vorlesungen über höhere Mathematik (eBook, PDF)
Gewöhnliche und partielle Differentialgleichungen. Variationsrechnung. Funktionen einer komplexen Veränderlichen
-20%11
59,99 €
74,99 €**
59,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
30 °P sammeln
-20%11
59,99 €
74,99 €**
59,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
30 °P sammeln
Als Download kaufen
74,99 €****
-20%11
59,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
30 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
74,99 €****
-20%11
59,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
30 °P sammeln
Adalbert Duschek
Vorlesungen über höhere Mathematik (eBook, PDF)
Gewöhnliche und partielle Differentialgleichungen. Variationsrechnung. Funktionen einer komplexen Veränderlichen
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
- Weitere 10 Ausgaben:
- Gebundenes Buch
- Broschiertes Buch
- Broschiertes Buch
- Broschiertes Buch
- Broschiertes Buch
- Broschiertes Buch
- eBook, PDF
- eBook, PDF
- eBook, PDF
- eBook, PDF
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 69.28MB
Produktdetails
- Verlag: Springer Vienna
- Seitenzahl: 513
- Erscheinungstermin: 14. März 2013
- Deutsch
- ISBN-13: 9783709176870
- Artikelnr.: 53384021
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Grundbegriffe.- Differentiation der Funktionen von mehreren Veränderlichen.-
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
I. Ergänzungen aus der reellen Analysis.- 1. Funktionen von beschränkter Variation. Stieltjesintegrale.- 2. Fourierreihen und Fouriersches Integraltheorem.- 3. Asymptotische Entwicklungen. Die Eulersche Summenformel.- 4. Orthogonale Funktionensysteme.- II. Integralgleichungen und Laplacetransformation.- 5. Grundzüge der allgemeinen Theorie der linearen Integralgleichungen zweiter Art.- 6. Symmetrische Kerne.- 7. Ergänzungen.- 8. Die Laplacetransformation.- III. Randwertprobleme bei gewöhnlichen Differentialgleichungen.- 9. Lineare Differentialgleichungen im komplexen Gebiet.- 10. Randwertaufgaben zweiter Ordnung.- 11. Kugelfunktionen und Legendresche Polynome.- 12. Die Besselschen Funktionen.- 13. Weitere spezielle Funktionen.- IV. Grundzüge der Potentialtheorie.- 14. Die Newtonschen Potentiale.- 15. Die Greenschen Formeln. Eindeutigkeits- und Mittelwertsätze.- 16. Das Verhalten der Potentiale in Quellpunkten.- 17. Allgemeine Vektorfelder.- V. Die Randwertaufgaben der Potentialtheorie.- 18. Die Greensche Funktion.- 19. Lösung der ersten Randwertaufgabe für Kreis und Kugel. Die Sätze von Harnack.- 20. Die Existenzsätze.- Anhang. Lösungen der Aufgaben.- Namenverzeichnis.
I. Grundbegriffe.- Differentiation der Funktionen von mehreren Veränderlichen.-
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
I. Ergänzungen aus der reellen Analysis.- 1. Funktionen von beschränkter Variation. Stieltjesintegrale.- 2. Fourierreihen und Fouriersches Integraltheorem.- 3. Asymptotische Entwicklungen. Die Eulersche Summenformel.- 4. Orthogonale Funktionensysteme.- II. Integralgleichungen und Laplacetransformation.- 5. Grundzüge der allgemeinen Theorie der linearen Integralgleichungen zweiter Art.- 6. Symmetrische Kerne.- 7. Ergänzungen.- 8. Die Laplacetransformation.- III. Randwertprobleme bei gewöhnlichen Differentialgleichungen.- 9. Lineare Differentialgleichungen im komplexen Gebiet.- 10. Randwertaufgaben zweiter Ordnung.- 11. Kugelfunktionen und Legendresche Polynome.- 12. Die Besselschen Funktionen.- 13. Weitere spezielle Funktionen.- IV. Grundzüge der Potentialtheorie.- 14. Die Newtonschen Potentiale.- 15. Die Greenschen Formeln. Eindeutigkeits- und Mittelwertsätze.- 16. Das Verhalten der Potentiale in Quellpunkten.- 17. Allgemeine Vektorfelder.- V. Die Randwertaufgaben der Potentialtheorie.- 18. Die Greensche Funktion.- 19. Lösung der ersten Randwertaufgabe für Kreis und Kugel. Die Sätze von Harnack.- 20. Die Existenzsätze.- Anhang. Lösungen der Aufgaben.- Namenverzeichnis.