Gerd Wechsung
Vorlesungen zur Komplexitätstheorie (eBook, PDF)
-22%11
46,99 €
59,95 €**
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
23 °P sammeln
-22%11
46,99 €
59,95 €**
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
Als Download kaufen
59,95 €****
-22%11
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
23 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
59,95 €****
-22%11
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
Gerd Wechsung
Vorlesungen zur Komplexitätstheorie (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Elementare Resultate aus der Komplexitätstheorie werden in diesem Buch ebenso behandelt wie auch die Themen Polynomialzeithierarchie, probabilistische Klassen oder die Hausdorffsche Hierarchie, Funktionalklassen und Zählklassen. Das Buch ist aus mehrjährigen Vorlesungen des Autors über Komplexitätstheorie entstanden.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 38.38MB
Elementare Resultate aus der Komplexitätstheorie werden in diesem Buch ebenso behandelt wie auch die Themen Polynomialzeithierarchie, probabilistische Klassen oder die Hausdorffsche Hierarchie, Funktionalklassen und Zählklassen. Das Buch ist aus mehrjährigen Vorlesungen des Autors über Komplexitätstheorie entstanden.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 312
- Erscheinungstermin: 7. März 2013
- Deutsch
- ISBN-13: 9783322800244
- Artikelnr.: 54017909
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 312
- Erscheinungstermin: 7. März 2013
- Deutsch
- ISBN-13: 9783322800244
- Artikelnr.: 54017909
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Dr. Gerd Wechsung, Universität Jena
Symbolverzeichnis.- 1 Hierarchien von Komplexitätsklassen.- 1.1 Komplexitätsmaße und -klassen.- 1.2 Existenz beliebig schwieriger Probleme.- 1.3 Kompression und Beschleunigung.- 1.4 Hierarchiesätze.- 1.5 Untere Schranken.- 2 Zwischen L und PSPACE.- 2.1 Einfache Inklusionsbeziehungen.- 2.2 Komplexitätsbeschränkte m-Reduktionen.- 2.3 Vollständige Probleme in NL.- 2.4 Vollständige Probleme in P.- 2.5 Das P-NP-Problem.- 3 Die Polynomialzeithierarchie.- 3.1 Weitere Reduktionsbegriffe.- 3.2 Die Polynomialzeithierarchie.- 3.3 Akzeptierungstypen für $$Delta _2^P $$ und $$Theta _2^P $$.- 3.4 Alternierende Maschinen.- 3.5 Alternierende Komplexitätsklassen.- 3.6 Weitere Vollständigkeitsresultate.- 3.7 Blattsprachenklassen.- 3.8 Relativierungen.- 4 Einige besondere Resultate.- 4.1 Der Satz von Savitch.- 4.2 coNSPACE-Klassen.- 4.3 Blockrespektierende Berechnungen.- 4.4 Raum ist besser als Zeit.- 4.5 DLINTIME ? NUNTIME.- 5 Dünne vollständige bzw. harte Mengen.- 5.1 Dünne Mengen.- 5.2 Nichtuniforme Berechnungen.- 5.3 Das Isomorphieproblem.- 5.4 Dünne btt-harte Mengen für NP.- 5.5 Dünne T-harte Mengen für NP.- 6 Die Hausdorffsche Hierarchie über NP.- 6.1 Der Boolesche Abschluß von NP.- 6.2 Akzeptierungstypen für die BHk(NP).- 6.3 Erweiterung der Hausdorffschen Hierarchie.- 6.4 tt-Charakterisierung der BHk(NP).- 6.5 Die Fragehierarchie.- 6.6 Vollständige Probleme.- 6.7 Kann die Hausdorffsche Hierarchie endlich sein?.- 6.8 Verschiedene Orakel.- 7 Zählklassen.- 7.1 Zählklassen von endlichem Typ.- 7.2 Die einfachste Zählklasse.- 7.3 Die Klasse ?P.- 7.4 Längenabhängige Akzeptierungstypen.- 7.5 Promise-Klassen.- 8 Probabilistische Klassen.- 8.1 Die Klassen RP und ZPP.- 8.2 Die Klassen PP und G=P.- 8.3 Beschränkte Fehlerwahrscheinlichkeit.- 8.4 DerMehrheitsquantor.- 8.5 Die Arthur-Merlin-Hierarchie.- 8.6 Operatoren.- 8.7 Die Ergebnisse von Toda.- 9 Funktionenklassen.- 9.1 Funktionen- und Relationenanaloga zu P und NP.- 9.2 Verfeinerungen von Relationen.- 9.3 Anzahl von Lö.- 9.4 Konstruktion von Lösungen.- 9.5 Selbstreduzierbarkeit.- 9.6 Optimale Lösungen.- 10 Lowness und Highness.- 10.1 Die low- und die high-Hierarchie.- 10.2 Einordnung konkreter Klassen.- 10.3 Selektivität.- 10.4 Graphisomorphie.- A Mathematische Grundlagen.- A.1 Logische Grundbegriffe.- A.2 Mengen, Relationen, Funktionen.- A.2.1 Mengen.- A.2.2 Relationen.- A.2.3 Funktionen.- A.2.4 Asymptotisches Wachstum.- A.3 Formale Sprachen.- A.4 Turingmaschinen und Berechenbarkeit.- Autorenverzeichnis.- Sachwortverzeichnis.
Symbolverzeichnis.- 1 Hierarchien von Komplexitätsklassen.- 1.1 Komplexitätsmaße und -klassen.- 1.2 Existenz beliebig schwieriger Probleme.- 1.3 Kompression und Beschleunigung.- 1.4 Hierarchiesätze.- 1.5 Untere Schranken.- 2 Zwischen L und PSPACE.- 2.1 Einfache Inklusionsbeziehungen.- 2.2 Komplexitätsbeschränkte m-Reduktionen.- 2.3 Vollständige Probleme in NL.- 2.4 Vollständige Probleme in P.- 2.5 Das P-NP-Problem.- 3 Die Polynomialzeithierarchie.- 3.1 Weitere Reduktionsbegriffe.- 3.2 Die Polynomialzeithierarchie.- 3.3 Akzeptierungstypen für $$Delta _2^P $$ und $$Theta _2^P $$.- 3.4 Alternierende Maschinen.- 3.5 Alternierende Komplexitätsklassen.- 3.6 Weitere Vollständigkeitsresultate.- 3.7 Blattsprachenklassen.- 3.8 Relativierungen.- 4 Einige besondere Resultate.- 4.1 Der Satz von Savitch.- 4.2 coNSPACE-Klassen.- 4.3 Blockrespektierende Berechnungen.- 4.4 Raum ist besser als Zeit.- 4.5 DLINTIME ? NUNTIME.- 5 Dünne vollständige bzw. harte Mengen.- 5.1 Dünne Mengen.- 5.2 Nichtuniforme Berechnungen.- 5.3 Das Isomorphieproblem.- 5.4 Dünne btt-harte Mengen für NP.- 5.5 Dünne T-harte Mengen für NP.- 6 Die Hausdorffsche Hierarchie über NP.- 6.1 Der Boolesche Abschluß von NP.- 6.2 Akzeptierungstypen für die BHk(NP).- 6.3 Erweiterung der Hausdorffschen Hierarchie.- 6.4 tt-Charakterisierung der BHk(NP).- 6.5 Die Fragehierarchie.- 6.6 Vollständige Probleme.- 6.7 Kann die Hausdorffsche Hierarchie endlich sein?.- 6.8 Verschiedene Orakel.- 7 Zählklassen.- 7.1 Zählklassen von endlichem Typ.- 7.2 Die einfachste Zählklasse.- 7.3 Die Klasse ?P.- 7.4 Längenabhängige Akzeptierungstypen.- 7.5 Promise-Klassen.- 8 Probabilistische Klassen.- 8.1 Die Klassen RP und ZPP.- 8.2 Die Klassen PP und G=P.- 8.3 Beschränkte Fehlerwahrscheinlichkeit.- 8.4 DerMehrheitsquantor.- 8.5 Die Arthur-Merlin-Hierarchie.- 8.6 Operatoren.- 8.7 Die Ergebnisse von Toda.- 9 Funktionenklassen.- 9.1 Funktionen- und Relationenanaloga zu P und NP.- 9.2 Verfeinerungen von Relationen.- 9.3 Anzahl von Lö.- 9.4 Konstruktion von Lösungen.- 9.5 Selbstreduzierbarkeit.- 9.6 Optimale Lösungen.- 10 Lowness und Highness.- 10.1 Die low- und die high-Hierarchie.- 10.2 Einordnung konkreter Klassen.- 10.3 Selektivität.- 10.4 Graphisomorphie.- A Mathematische Grundlagen.- A.1 Logische Grundbegriffe.- A.2 Mengen, Relationen, Funktionen.- A.2.1 Mengen.- A.2.2 Relationen.- A.2.3 Funktionen.- A.2.4 Asymptotisches Wachstum.- A.3 Formale Sprachen.- A.4 Turingmaschinen und Berechenbarkeit.- Autorenverzeichnis.- Sachwortverzeichnis.