50,95 €
50,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
25 °P sammeln
50,95 €
50,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
25 °P sammeln
Als Download kaufen
50,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
25 °P sammeln
Jetzt verschenken
50,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
25 °P sammeln
  • Format: ePub

An engineering-oriented introduction to wave propagation by an award-winning MIT professor, with highly accessible expositions and mathematical details—many classical but others not heretofore published.
A wave is a traveling disturbance or oscillation—intentional or unintentional—that usually transfers energy without a net displacement of the medium in which the energy travels. Wave propagation is any of the means by which a wave travels. This book offers an engineering-oriented introduction to wave propagation that focuses on wave propagation in one-dimensional models that are anchored by…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 38.66MB
  • FamilySharing(5)
Produktbeschreibung
An engineering-oriented introduction to wave propagation by an award-winning MIT professor, with highly accessible expositions and mathematical details—many classical but others not heretofore published.

A wave is a traveling disturbance or oscillation—intentional or unintentional—that usually transfers energy without a net displacement of the medium in which the energy travels. Wave propagation is any of the means by which a wave travels. This book offers an engineering-oriented introduction to wave propagation that focuses on wave propagation in one-dimensional models that are anchored by the classical wave equation. The text is written in a style that is highly accessible to undergraduates, featuring extended and repetitive expositions and displaying and explaining mathematical and physical details—many classical but others not heretofore published. The formulations are devised to provide analytical foundations for studying more advanced topics of wave propagation.

After a precalculus summary of rudimentary wave propagation and an introduction of the classical wave equation, the book presents solutions for the models of systems that are dimensionally infinite, semi-infinite, and finite. Chapters typically begin with a vignette based on some aspect of wave propagation, drawing on a diverse range of topics. The book provides more than two hundred end-of-chapter problems (supplying answers to most problems requiring a numerical result or brief analytical expression). Appendixes cover equations of motion for strings, rods, and circular shafts; shear beams; and electric transmission lines.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
James H. Williams, Jr. is School of Engineering Professor of Teaching Excellence (inaugural chairholder) and Professor of Mechanical Engineering at MIT. He is also Professor of Writing and Humanistic Studies in MIT's School of Humanities, Arts, and Social Sciences. He was awarded the inaugural J. P. Den Hartog Distinguished Educator Award for excellence in teaching mechanical engineering. He has conducted dozens of international engineering consultations.