40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
Jetzt verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
  • Format: PDF

This third edition builds on the introduction of spectral analysis as a means of investigating wave propagation and transient oscillations in structures. Each chapter of the textbook has been revised, updated and augmented with new material, such as a modified treatment of the curved plate and cylinder problem that yields a relatively simple but accurate spectral analysis. Finite element methods are now integrated into the spectral analyses to gain further insights into the high-frequency problems. In addition, a completely new chapter has been added that deals with waves in periodic and…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 18.22MB
Produktbeschreibung
This third edition builds on the introduction of spectral analysis as a means of investigating wave propagation and transient oscillations in structures. Each chapter of the textbook has been revised, updated and augmented with new material, such as a modified treatment of the curved plate and cylinder problem that yields a relatively simple but accurate spectral analysis. Finite element methods are now integrated into the spectral analyses to gain further insights into the high-frequency problems. In addition, a completely new chapter has been added that deals with waves in periodic and discretized structures. Examples for phononic materials meta-materials as well as genuine atomic systems are given.


  • Systematically develops and then applies the spectral methods to analyzing the dynamic responses;
  • Examines spectral analysis of discrete and discretized structures;
  • Explains spectral analysis as applied to metamaterials and nanostructures;
  • Reinforces reader understanding with a combination of experimental and analytical results related to wave propagation in structures.



Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
James F. Doyle is a professor of Aeronautics and Astronautics at Purdue University. He received a Dip. Eng, from DIT, Ireland; M.Sc. from University of Saskatchewan., Canada; and PhD, from University of Illinois, USA. His main areas of research is experimental and computational mechanics, Wave propagation, and nonlinear structural dynamics; special emphasis is placed on solving inverse problems. He has published a number of book on these topics. Professor Doyle is a dedicated teacher and pedagogical innovator. He is a recipient of the Frocht Award for Teaching and the Hetenyi Award for Research, both from the Society for Experimental Mechanics. He is a Fellow of the Society for Experimental Mechanics.