Sabrine Arfaoui, Anouar Ben Mabrouk, Carlo Cattani
Wavelet Analysis (eBook, PDF)
Basic Concepts and Applications
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Sabrine Arfaoui, Anouar Ben Mabrouk, Carlo Cattani
Wavelet Analysis (eBook, PDF)
Basic Concepts and Applications
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides a basic and self-contained introduction to the ideas underpinning wavelet theory and its diverse applications. This book is suitable for master's or PhD students, senior researchers, or scientists working in industrial settings, where wavelets are used to model real world phenomena.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.27MB
Andere Kunden interessierten sich auch für
- Sabrine ArfaouiWavelet Analysis (eBook, ePUB)48,95 €
- Alexander I. SaichevDistributions in the Physical and Engineering Sciences, Volume 1 (eBook, PDF)40,95 €
- Yves NievergeltWavelets Made Easy (eBook, PDF)40,95 €
- Howard L. ResnikoffWavelet Analysis (eBook, PDF)40,95 €
- Representations, Wavelets, and Frames (eBook, PDF)73,95 €
- Gerald KaiserA Friendly Guide to Wavelets (eBook, PDF)61,95 €
- Ole ChristensenFunctions, Spaces, and Expansions (eBook, PDF)65,95 €
-
-
-
This book provides a basic and self-contained introduction to the ideas underpinning wavelet theory and its diverse applications. This book is suitable for master's or PhD students, senior researchers, or scientists working in industrial settings, where wavelets are used to model real world phenomena.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 254
- Erscheinungstermin: 20. April 2021
- Englisch
- ISBN-13: 9781000369540
- Artikelnr.: 61429560
- Verlag: Taylor & Francis
- Seitenzahl: 254
- Erscheinungstermin: 20. April 2021
- Englisch
- ISBN-13: 9781000369540
- Artikelnr.: 61429560
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Sabrine Arfaoui is the assistant professor of mathematics at the Faculty of Sciences, University of Monastir. Her main interests include wavelet harmonic analysis, especially in the Clifford algebra/analysis framework and their applications in other fields such as fractals, PDEs, bio-signals/bio-images. Currently Dr. Arfaoui is associated with the University of Tabuk, Saudi Arabia in a technical cooperation project.
Anouar Ben Mabrouk is currently working as the professor of mathematics. He is also the associate professor of Mathematics at the University of Kairouan, Tunisia, the Faculty of Sciences, University of Monastir. His main research interests are are wavelets, fractals, probability/statistics, PDEs and related fields such as financial mathematics, time series, image/signal processing, numerical and theoretical aspects of PDEs. Dr. Ben Mabrouk is currently associated with the University of Tabuk, Saudi Arabia in a technical cooperation project.
Carlo Cattani is currently the professor of Mathematical Physics and Applied Mathematics at the Engineering School (DEIM) of University of Tuscia. His scientific interests include but are not limited to wavelets, dynamical systems, fractals, fractional calculus, numerical methods, number theory, stochastic integro-differential equations, competition models, time-series analysis, nonlinear analysis, complexity of living systems, pattern analysis, computational biology, biophysics, history of science. He has (co)authored more than 150 scientific articles on international journals as well as several books.
Anouar Ben Mabrouk is currently working as the professor of mathematics. He is also the associate professor of Mathematics at the University of Kairouan, Tunisia, the Faculty of Sciences, University of Monastir. His main research interests are are wavelets, fractals, probability/statistics, PDEs and related fields such as financial mathematics, time series, image/signal processing, numerical and theoretical aspects of PDEs. Dr. Ben Mabrouk is currently associated with the University of Tabuk, Saudi Arabia in a technical cooperation project.
Carlo Cattani is currently the professor of Mathematical Physics and Applied Mathematics at the Engineering School (DEIM) of University of Tuscia. His scientific interests include but are not limited to wavelets, dynamical systems, fractals, fractional calculus, numerical methods, number theory, stochastic integro-differential equations, competition models, time-series analysis, nonlinear analysis, complexity of living systems, pattern analysis, computational biology, biophysics, history of science. He has (co)authored more than 150 scientific articles on international journals as well as several books.
Chapter 1. Introduction. Chapter 2. Wavelets on Euclidean Spaces. 2.1.
Introduction. 2.2. Wavelets on R. 2.3. Multi-Resolution Analysis. 2.4.
Wavelet Algorithms. 2.5. Wavelet Basis. 2.6. Multidimensional Real
Wavelets. 2.7. Examples of Wavelet Functions and MRA. 2.8. Exercise. 3.
Wavelets Extended. 3.1. Affine Group Wavelets. 3.2. Multiresolution
Analysis on The Interval. 3.3 Wavelets on The Sphere. 3.4. Exercise. 4.
Clifford Wavelets. 4.1. Introduction. 4.2. Different Constructions of
Clifford Algebra. 4.3. Graduation in Clifford Algebra. 4.4. Some useful
operations of Clifford Algebra. 4.5. Clifford Functional Analysis. 4.6.
Existence of Monogenic Extensions. 4.7. Clifford-Fourier Transform. 4.8.
Some Experimentations. 4.9. Exercise. 5. Quantum Wavelets. 5.1.
Introduction. 5.2. Bessel Functions. 5.3. Bessel Wavelets. 5.4. Fractional
Bessel Wavelets. 5.5. Quantum Theory Toolkit. 5.6. Some Quantum Special
Functions. 5.7. Quantum Wavelets. 5.8. Exercise. 6. Wavelets in Statistics.
6.1 Introduction. 6.2. Wavelet Analysis of Time Series. 6.3. Wavelet
Variance and Covariance. 6.4. Wavelet Decimated and Stationary Transforms.
6.5. Wavelet Density Estimation. 6.6. Wavelet Thresholding. 6.7.
Application to Wavelet Density Estimations. 6.8. Exercise. 7. Wavelets for
Partial Differential Equations. 7.1. Introduction. 7.2. Wavelet Collocation
Method. 7.3. Wavelet Galerkin Approach. 7.4. Reduction of the Connection
Coefficients Number. 7.5. Two Main Applications for Solving PDEs. 7.6.
Appendix. 7.7. Exercise. 8. Wavelets for Fractal and Multifractal
Functions. 8.1. Introduction. 8.2. Hausdorff Measure and Dimension. 8.3.
Wavelets for The Regularity Of Functions. 8.4. The Multifractal Formalism.
8.5. Similar Type Functions. 8.6. Application to Financial Index Modeling.
8.7. Appendix. 8.8. Exercise.
Introduction. 2.2. Wavelets on R. 2.3. Multi-Resolution Analysis. 2.4.
Wavelet Algorithms. 2.5. Wavelet Basis. 2.6. Multidimensional Real
Wavelets. 2.7. Examples of Wavelet Functions and MRA. 2.8. Exercise. 3.
Wavelets Extended. 3.1. Affine Group Wavelets. 3.2. Multiresolution
Analysis on The Interval. 3.3 Wavelets on The Sphere. 3.4. Exercise. 4.
Clifford Wavelets. 4.1. Introduction. 4.2. Different Constructions of
Clifford Algebra. 4.3. Graduation in Clifford Algebra. 4.4. Some useful
operations of Clifford Algebra. 4.5. Clifford Functional Analysis. 4.6.
Existence of Monogenic Extensions. 4.7. Clifford-Fourier Transform. 4.8.
Some Experimentations. 4.9. Exercise. 5. Quantum Wavelets. 5.1.
Introduction. 5.2. Bessel Functions. 5.3. Bessel Wavelets. 5.4. Fractional
Bessel Wavelets. 5.5. Quantum Theory Toolkit. 5.6. Some Quantum Special
Functions. 5.7. Quantum Wavelets. 5.8. Exercise. 6. Wavelets in Statistics.
6.1 Introduction. 6.2. Wavelet Analysis of Time Series. 6.3. Wavelet
Variance and Covariance. 6.4. Wavelet Decimated and Stationary Transforms.
6.5. Wavelet Density Estimation. 6.6. Wavelet Thresholding. 6.7.
Application to Wavelet Density Estimations. 6.8. Exercise. 7. Wavelets for
Partial Differential Equations. 7.1. Introduction. 7.2. Wavelet Collocation
Method. 7.3. Wavelet Galerkin Approach. 7.4. Reduction of the Connection
Coefficients Number. 7.5. Two Main Applications for Solving PDEs. 7.6.
Appendix. 7.7. Exercise. 8. Wavelets for Fractal and Multifractal
Functions. 8.1. Introduction. 8.2. Hausdorff Measure and Dimension. 8.3.
Wavelets for The Regularity Of Functions. 8.4. The Multifractal Formalism.
8.5. Similar Type Functions. 8.6. Application to Financial Index Modeling.
8.7. Appendix. 8.8. Exercise.
Chapter 1. Introduction. Chapter 2. Wavelets on Euclidean Spaces. 2.1. Introduction. 2.2. Wavelets on R. 2.3. Multi-Resolution Analysis. 2.4. Wavelet Algorithms. 2.5. Wavelet Basis. 2.6. Multidimensional Real Wavelets. 2.7. Examples of Wavelet Functions and MRA. 2.8. Exercise. 3. Wavelets Extended. 3.1. Affine Group Wavelets. 3.2. Multiresolution Analysis on The Interval. 3.3 Wavelets on The Sphere. 3.4. Exercise. 4. Clifford Wavelets. 4.1. Introduction. 4.2. Different Constructions of Clifford Algebra. 4.3. Graduation in Clifford Algebra. 4.4. Some useful operations of Clifford Algebra. 4.5. Clifford Functional Analysis. 4.6. Existence of Monogenic Extensions. 4.7. Clifford-Fourier Transform. 4.8. Some Experimentations. 4.9. Exercise. 5. Quantum Wavelets. 5.1. Introduction. 5.2. Bessel Functions. 5.3. Bessel Wavelets. 5.4. Fractional Bessel Wavelets. 5.5. Quantum Theory Toolkit. 5.6. Some Quantum Special Functions. 5.7. Quantum Wavelets. 5.8. Exercise. 6. Wavelets in Statistics. 6.1 Introduction. 6.2. Wavelet Analysis of Time Series. 6.3. Wavelet Variance and Covariance. 6.4. Wavelet Decimated and Stationary Transforms. 6.5. Wavelet Density Estimation. 6.6. Wavelet Thresholding. 6.7. Application to Wavelet Density Estimations. 6.8. Exercise. 7. Wavelets for Partial Differential Equations. 7.1. Introduction. 7.2. Wavelet Collocation Method. 7.3. Wavelet Galerkin Approach. 7.4. Reduction of the Connection Coefficients Number. 7.5. Two Main Applications for Solving PDEs. 7.6. Appendix. 7.7. Exercise. 8. Wavelets for Fractal and Multifractal Functions. 8.1. Introduction. 8.2. Hausdorff Measure and Dimension. 8.3. Wavelets for The Regularity Of Functions. 8.4. The Multifractal Formalism. 8.5. Similar Type Functions. 8.6. Application to Financial Index Modeling. 8.7. Appendix. 8.8. Exercise.
Chapter 1. Introduction. Chapter 2. Wavelets on Euclidean Spaces. 2.1.
Introduction. 2.2. Wavelets on R. 2.3. Multi-Resolution Analysis. 2.4.
Wavelet Algorithms. 2.5. Wavelet Basis. 2.6. Multidimensional Real
Wavelets. 2.7. Examples of Wavelet Functions and MRA. 2.8. Exercise. 3.
Wavelets Extended. 3.1. Affine Group Wavelets. 3.2. Multiresolution
Analysis on The Interval. 3.3 Wavelets on The Sphere. 3.4. Exercise. 4.
Clifford Wavelets. 4.1. Introduction. 4.2. Different Constructions of
Clifford Algebra. 4.3. Graduation in Clifford Algebra. 4.4. Some useful
operations of Clifford Algebra. 4.5. Clifford Functional Analysis. 4.6.
Existence of Monogenic Extensions. 4.7. Clifford-Fourier Transform. 4.8.
Some Experimentations. 4.9. Exercise. 5. Quantum Wavelets. 5.1.
Introduction. 5.2. Bessel Functions. 5.3. Bessel Wavelets. 5.4. Fractional
Bessel Wavelets. 5.5. Quantum Theory Toolkit. 5.6. Some Quantum Special
Functions. 5.7. Quantum Wavelets. 5.8. Exercise. 6. Wavelets in Statistics.
6.1 Introduction. 6.2. Wavelet Analysis of Time Series. 6.3. Wavelet
Variance and Covariance. 6.4. Wavelet Decimated and Stationary Transforms.
6.5. Wavelet Density Estimation. 6.6. Wavelet Thresholding. 6.7.
Application to Wavelet Density Estimations. 6.8. Exercise. 7. Wavelets for
Partial Differential Equations. 7.1. Introduction. 7.2. Wavelet Collocation
Method. 7.3. Wavelet Galerkin Approach. 7.4. Reduction of the Connection
Coefficients Number. 7.5. Two Main Applications for Solving PDEs. 7.6.
Appendix. 7.7. Exercise. 8. Wavelets for Fractal and Multifractal
Functions. 8.1. Introduction. 8.2. Hausdorff Measure and Dimension. 8.3.
Wavelets for The Regularity Of Functions. 8.4. The Multifractal Formalism.
8.5. Similar Type Functions. 8.6. Application to Financial Index Modeling.
8.7. Appendix. 8.8. Exercise.
Introduction. 2.2. Wavelets on R. 2.3. Multi-Resolution Analysis. 2.4.
Wavelet Algorithms. 2.5. Wavelet Basis. 2.6. Multidimensional Real
Wavelets. 2.7. Examples of Wavelet Functions and MRA. 2.8. Exercise. 3.
Wavelets Extended. 3.1. Affine Group Wavelets. 3.2. Multiresolution
Analysis on The Interval. 3.3 Wavelets on The Sphere. 3.4. Exercise. 4.
Clifford Wavelets. 4.1. Introduction. 4.2. Different Constructions of
Clifford Algebra. 4.3. Graduation in Clifford Algebra. 4.4. Some useful
operations of Clifford Algebra. 4.5. Clifford Functional Analysis. 4.6.
Existence of Monogenic Extensions. 4.7. Clifford-Fourier Transform. 4.8.
Some Experimentations. 4.9. Exercise. 5. Quantum Wavelets. 5.1.
Introduction. 5.2. Bessel Functions. 5.3. Bessel Wavelets. 5.4. Fractional
Bessel Wavelets. 5.5. Quantum Theory Toolkit. 5.6. Some Quantum Special
Functions. 5.7. Quantum Wavelets. 5.8. Exercise. 6. Wavelets in Statistics.
6.1 Introduction. 6.2. Wavelet Analysis of Time Series. 6.3. Wavelet
Variance and Covariance. 6.4. Wavelet Decimated and Stationary Transforms.
6.5. Wavelet Density Estimation. 6.6. Wavelet Thresholding. 6.7.
Application to Wavelet Density Estimations. 6.8. Exercise. 7. Wavelets for
Partial Differential Equations. 7.1. Introduction. 7.2. Wavelet Collocation
Method. 7.3. Wavelet Galerkin Approach. 7.4. Reduction of the Connection
Coefficients Number. 7.5. Two Main Applications for Solving PDEs. 7.6.
Appendix. 7.7. Exercise. 8. Wavelets for Fractal and Multifractal
Functions. 8.1. Introduction. 8.2. Hausdorff Measure and Dimension. 8.3.
Wavelets for The Regularity Of Functions. 8.4. The Multifractal Formalism.
8.5. Similar Type Functions. 8.6. Application to Financial Index Modeling.
8.7. Appendix. 8.8. Exercise.
Chapter 1. Introduction. Chapter 2. Wavelets on Euclidean Spaces. 2.1. Introduction. 2.2. Wavelets on R. 2.3. Multi-Resolution Analysis. 2.4. Wavelet Algorithms. 2.5. Wavelet Basis. 2.6. Multidimensional Real Wavelets. 2.7. Examples of Wavelet Functions and MRA. 2.8. Exercise. 3. Wavelets Extended. 3.1. Affine Group Wavelets. 3.2. Multiresolution Analysis on The Interval. 3.3 Wavelets on The Sphere. 3.4. Exercise. 4. Clifford Wavelets. 4.1. Introduction. 4.2. Different Constructions of Clifford Algebra. 4.3. Graduation in Clifford Algebra. 4.4. Some useful operations of Clifford Algebra. 4.5. Clifford Functional Analysis. 4.6. Existence of Monogenic Extensions. 4.7. Clifford-Fourier Transform. 4.8. Some Experimentations. 4.9. Exercise. 5. Quantum Wavelets. 5.1. Introduction. 5.2. Bessel Functions. 5.3. Bessel Wavelets. 5.4. Fractional Bessel Wavelets. 5.5. Quantum Theory Toolkit. 5.6. Some Quantum Special Functions. 5.7. Quantum Wavelets. 5.8. Exercise. 6. Wavelets in Statistics. 6.1 Introduction. 6.2. Wavelet Analysis of Time Series. 6.3. Wavelet Variance and Covariance. 6.4. Wavelet Decimated and Stationary Transforms. 6.5. Wavelet Density Estimation. 6.6. Wavelet Thresholding. 6.7. Application to Wavelet Density Estimations. 6.8. Exercise. 7. Wavelets for Partial Differential Equations. 7.1. Introduction. 7.2. Wavelet Collocation Method. 7.3. Wavelet Galerkin Approach. 7.4. Reduction of the Connection Coefficients Number. 7.5. Two Main Applications for Solving PDEs. 7.6. Appendix. 7.7. Exercise. 8. Wavelets for Fractal and Multifractal Functions. 8.1. Introduction. 8.2. Hausdorff Measure and Dimension. 8.3. Wavelets for The Regularity Of Functions. 8.4. The Multifractal Formalism. 8.5. Similar Type Functions. 8.6. Application to Financial Index Modeling. 8.7. Appendix. 8.8. Exercise.