The present softcover reprint retains the corrections from the second printing (2001) and makes this unique text available to a wider audience. The first chapter starts with a description of the key features and applications of wavelets, focusing on Haar's wavelets but using only high-school mathematics. The next two chapters introduce one-, two-, and three-dimensional wavelets, with only the occasional use of matrix algebra.
The second part of this book provides the foundations of least-squares approximation, the discrete Fourier transform, and Fourier series. The third part explains the Fourier transform and then demonstrates how to apply basic Fourier analysis to designing and analyzing mathematical wavelets. Particular attention is paid to Daubechies wavelets.
Numerous exercises, a bibliography, and a comprehensive index combine to make this book an excellent text for the classroom as well as a valuable resource for self-study.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.