Web mining aims to discover useful information and knowledge from Web hyperlinks, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semi-structured and unstructured nature of the Web data. The field has also developed many of its own algorithms and techniques.
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all therelated concepts and algorithms together to form an authoritative and coherent text.
The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all therelated concepts and algorithms together to form an authoritative and coherent text.
The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
From the reviews:
"This is a textbook about data mining and its application to the Web. [...] Liu succeeds in helping readers appreciate the key role that data mining and machine learning play in Web applications. [...] It also motivates the student by adding immediacy and relevance to the concepts and algorithms described. I liked the way the concepts are introduced in a stepwise manner. [...] I also appreciated the bibliographical notes at the end of each chapter." ACM Computing Reviews, W. Hu, , January 2009
From the reviews of the second edition:
"Liu (Univ. of Illinois, Chicago) discusses all three types of Web mining--structure, content, and usage--in the technology's efforts to glean information from hyperlinks, Web page content, and usage logs. [...] Practical examples complement the discussions throughout the text, and each chapter includes useful 'Bibliographic Notes' and an extensive bibliography. [...] Liu states that his intended audience includes bothundergraduate and graduate students, but notes that researchers and Web programmers could benefit from this text as well. Summing Up: Recommended. Upper-division undergraduates through professionals." J. Johnson, Choice, Vol. 49 (5), January 2012
"[...] Liu's book provides a comprehensive, self-contained introduction to the major data mining techniques and their use in Web data mining. [...] Professionals and researchers alike will find this excellent book handy as a reference. Its extensive lists of references at the end of each chapter provide hundreds of pointers for further reading. As a textbook, it is also suitable for advanced undergraduate and graduate courses on Web mining; it is highly selfcontained and includes many easy-to-understand examples that will help readers grasp the key ideas behind current Web data mining techniques." ACM Computing Reviews, Fernando Berzal, February 2012
"This is a textbook about data mining and its application to the Web. [...] Liu succeeds in helping readers appreciate the key role that data mining and machine learning play in Web applications. [...] It also motivates the student by adding immediacy and relevance to the concepts and algorithms described. I liked the way the concepts are introduced in a stepwise manner. [...] I also appreciated the bibliographical notes at the end of each chapter." ACM Computing Reviews, W. Hu, , January 2009
From the reviews of the second edition:
"Liu (Univ. of Illinois, Chicago) discusses all three types of Web mining--structure, content, and usage--in the technology's efforts to glean information from hyperlinks, Web page content, and usage logs. [...] Practical examples complement the discussions throughout the text, and each chapter includes useful 'Bibliographic Notes' and an extensive bibliography. [...] Liu states that his intended audience includes bothundergraduate and graduate students, but notes that researchers and Web programmers could benefit from this text as well. Summing Up: Recommended. Upper-division undergraduates through professionals." J. Johnson, Choice, Vol. 49 (5), January 2012
"[...] Liu's book provides a comprehensive, self-contained introduction to the major data mining techniques and their use in Web data mining. [...] Professionals and researchers alike will find this excellent book handy as a reference. Its extensive lists of references at the end of each chapter provide hundreds of pointers for further reading. As a textbook, it is also suitable for advanced undergraduate and graduate courses on Web mining; it is highly selfcontained and includes many easy-to-understand examples that will help readers grasp the key ideas behind current Web data mining techniques." ACM Computing Reviews, Fernando Berzal, February 2012