89,95 €
89,95 €
inkl. MwSt.
Sofort per Download lieferbar
45 °P sammeln
89,95 €
Als Download kaufen
89,95 €
inkl. MwSt.
Sofort per Download lieferbar
45 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
89,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
45 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.96MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 201
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461229506
- Artikelnr.: 44062966
- Verlag: Springer US
- Seitenzahl: 201
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461229506
- Artikelnr.: 44062966
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
0. Introduction.- 1. Bootstrap and Asymptotic Normality.- 1. Introduction.- 2. Bootstrapping linear functionals. The i.i.d. case.- 3. Bootstrapping smooth functionals.- 4. Bootstrap and wild bootstrap in non i.i.d. models.- 5. Some simulations.- 6. Proofs.- Figures.- 2. An Example Where Bootstrap Fails: Comparing Nonparametric Versus Parametric Regression Fits.- 1. A goodness-of-fit test.- 2. How to bootstrap. Bootstrap and wild bootstrap.- 3. Proofs.- 3. A Bootstrap Success Story: Using Nonparametric Density Estimates in K-Sample Problems.- 1. Bootstrap tests.- 2. Bootstrap confidence regions.- 3. Proofs.- 4. A Bootstrap Test on the Number of Modes of a Density.- 1. Introduction.- 2. The number of modes of a kernel density estimator.- 3. Bootstrapping the test statistic.- 4. Proofs.- Figures.- 5. Higher-Order Accuracy of Bootstrap for Smooth Functionals.- 1. Introduction.- 2. Bootstrapping smooth functionals.- 3. Some more simulations. Bootstrapping an M-estimate.- 4. Proof of the theorem.- Figures.- 6. Bootstrapping Linear Models.- 1. Bootstrapping the least squares estimator.- 2. Bootstrapping F-tests.- 3. Proof of Theorem 3.- 7. Bootstrapping Robust Regression.- 1. Introduction.- 2. Bootstrapping M-estimates.- 3. Stochastic expansions of M-estimates.- 4. Proofs.- Figures.- 8. Bootstrap and wild Bootstrap for High-Dimensional Linear Random Design Models.- 1. Introduction.- 2. Consistency of bootstrap for linear contrasts.- 3. Accuracy of the bootstrap.- 4. Bootstrapping F-tests.- 5. Proofs.- Tables.- Figures.- 9. References.
0. Introduction.- 1. Bootstrap and Asymptotic Normality.- 1. Introduction.- 2. Bootstrapping linear functionals. The i.i.d. case.- 3. Bootstrapping smooth functionals.- 4. Bootstrap and wild bootstrap in non i.i.d. models.- 5. Some simulations.- 6. Proofs.- Figures.- 2. An Example Where Bootstrap Fails: Comparing Nonparametric Versus Parametric Regression Fits.- 1. A goodness-of-fit test.- 2. How to bootstrap. Bootstrap and wild bootstrap.- 3. Proofs.- 3. A Bootstrap Success Story: Using Nonparametric Density Estimates in K-Sample Problems.- 1. Bootstrap tests.- 2. Bootstrap confidence regions.- 3. Proofs.- 4. A Bootstrap Test on the Number of Modes of a Density.- 1. Introduction.- 2. The number of modes of a kernel density estimator.- 3. Bootstrapping the test statistic.- 4. Proofs.- Figures.- 5. Higher-Order Accuracy of Bootstrap for Smooth Functionals.- 1. Introduction.- 2. Bootstrapping smooth functionals.- 3. Some more simulations. Bootstrapping an M-estimate.- 4. Proof of the theorem.- Figures.- 6. Bootstrapping Linear Models.- 1. Bootstrapping the least squares estimator.- 2. Bootstrapping F-tests.- 3. Proof of Theorem 3.- 7. Bootstrapping Robust Regression.- 1. Introduction.- 2. Bootstrapping M-estimates.- 3. Stochastic expansions of M-estimates.- 4. Proofs.- Figures.- 8. Bootstrap and wild Bootstrap for High-Dimensional Linear Random Design Models.- 1. Introduction.- 2. Consistency of bootstrap for linear contrasts.- 3. Accuracy of the bootstrap.- 4. Bootstrapping F-tests.- 5. Proofs.- Tables.- Figures.- 9. References.