O avanço tecnológico colabora com o aumento do risco de perda de dados sensíveis de empresas e residências. Apesar da evolução e vasta disponibilidade de ferramentas de proteção, nos atuais sistemas de prevenção de vazamento de dados, como os Data Leak Prevent (DLP), a falta de flexibilidade, clareza e limitações funcionais dificultam a escolha. Existem diversas soluções comerciais que muitas vezes apresentam um alto custo de licenciamento, implantação, além de limitações de recursos de prevenção. O objetivo deste trabalho é validar a aplicação de uma rede neural na potencialização de um proxy DLP para impedir o envio não autorizado de dados sensíveis armazenados ou capturados por câmeras de vídeo. Neste trabalho é proposta uma arquitetura de DLP, que passa por treinamentos e pela implantação de uma ferramenta de reconhecimento de objetos em documentos de imagens e vídeos ? funcionalidade não presente nos DLP comerciais pesquisados. A partir de um experimento, com base nos índices de Verdadeiro Positivos, Falso Positivos e Verdadeiro Negativos, é possível observar a acurácia e a eficácia do uso de uma rede neural em um ambiente de DLP. E mostrar que tal integração protege com transparência sem ocultar limitações, e atende características de proteção que as principais soluções comerciais como Triton Websense, Check Point, Varonis e AirWatch não abordam.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.