136,95 €
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
68 °P sammeln
136,95 €
Als Download kaufen
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
68 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
68 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 23.46MB
Andere Kunden interessierten sich auch für
- Yunong ZhangZhang Time Discretization (ZTD) Formulas and Applications (eBook, ePUB)136,95 €
- Jitendra KumarMachine Learning for Cloud Management (eBook, PDF)59,95 €
- Richard J. RoigerJust Enough R! (eBook, PDF)41,95 €
- Yasmina Bestaoui SebbaneMulti-UAV Planning and Task Allocation (eBook, PDF)46,95 €
- Mark StampIntroduction to Machine Learning with Applications in Information Security (eBook, PDF)65,95 €
- Artificial Intelligence Theory, Models, and Applications (eBook, PDF)52,95 €
- Current Applications of Deep Learning in Cancer Diagnostics (eBook, PDF)47,95 €
-
-
-
The book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 355
- Erscheinungstermin: 7. August 2024
- Englisch
- ISBN-13: 9781040091616
- Artikelnr.: 72246491
- Verlag: Taylor & Francis
- Seitenzahl: 355
- Erscheinungstermin: 7. August 2024
- Englisch
- ISBN-13: 9781040091616
- Artikelnr.: 72246491
Yunong Zhang, PH.D., earned his B.S. degree from Huazhong University of Science and Technology, Wuhan, China, in 1996, his M.S. degree from South China University of Technology, Guangzhou, China, in 1999, and his Ph.D. from the Chinese University of Hong Kong, Shatin, Hong Kong, China, in 2003. He is currently a professor at the School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China. Dr. Zhang was supported by the Program for New Century Excellent Talents in Universities in 2007. He received the Best Paper Award from the International Symposium on Systems and Control in Aeronautics and Astronautics (ISSCAA) in 2008 and the Best Paper Award from the International Conference on Automation and Logistics (ICAL) in 2011. He was among the Highly Cited Scholars of China selected and published by Elsevier from 2014 to 2022.
Jinjin Guo, Ph.D., earned her B.E. degree in measurement technology and instrument from Nanchang University, Nanchang, China, in 2016, her M.E. degree in control engineering from Sun Yat-sen University, Guangzhou, China, in 2018, and her Ph.D. in computer science and technology from Sun Yat-sen University, Guangzhou, China, in 2022. She is currently a lecturer at the School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China. Her main research interests include neural networks, numerical computation, and tracking control.
Jinjin Guo, Ph.D., earned her B.E. degree in measurement technology and instrument from Nanchang University, Nanchang, China, in 2016, her M.E. degree in control engineering from Sun Yat-sen University, Guangzhou, China, in 2018, and her Ph.D. in computer science and technology from Sun Yat-sen University, Guangzhou, China, in 2022. She is currently a lecturer at the School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China. Her main research interests include neural networks, numerical computation, and tracking control.
1 Future Matrix Right Pseudoinversion 2 Future Equality-Constrained
Quadratic Programming 3 Future Matrix Inversion With Noises 4 Future Matrix
Pseudoinversion 5 Future Constrained Nonlinear Optimization With O(g3) 6
Future Unconstrained Nonlinear Optimization With O(g4) 7 Future
Different-Layer Inequation-Equation System Solving With O(g5) 8 Future
Matrix Square Root Finding With O(g6) 9 Tracking Control of Serial and
Parallel Manipulators 10 Future Matrix Inversion with Sometimes-Singular
Coefficient Matrix 11 Repetitive Motion Control of Redundant Manipulators
12 Future Different-Layer Equation System Solving 13 Future Matrix
Equations Solving 14 Minimum Joint Motion Control of Redundant Manipulators
15 Euler-Precision General Formula of ZTD 16 Lagrange
Numerical-Differentiation Formulas
Quadratic Programming 3 Future Matrix Inversion With Noises 4 Future Matrix
Pseudoinversion 5 Future Constrained Nonlinear Optimization With O(g3) 6
Future Unconstrained Nonlinear Optimization With O(g4) 7 Future
Different-Layer Inequation-Equation System Solving With O(g5) 8 Future
Matrix Square Root Finding With O(g6) 9 Tracking Control of Serial and
Parallel Manipulators 10 Future Matrix Inversion with Sometimes-Singular
Coefficient Matrix 11 Repetitive Motion Control of Redundant Manipulators
12 Future Different-Layer Equation System Solving 13 Future Matrix
Equations Solving 14 Minimum Joint Motion Control of Redundant Manipulators
15 Euler-Precision General Formula of ZTD 16 Lagrange
Numerical-Differentiation Formulas
1 Future Matrix Right Pseudoinversion 2 Future Equality-Constrained
Quadratic Programming 3 Future Matrix Inversion With Noises 4 Future Matrix
Pseudoinversion 5 Future Constrained Nonlinear Optimization With O(g3) 6
Future Unconstrained Nonlinear Optimization With O(g4) 7 Future
Different-Layer Inequation-Equation System Solving With O(g5) 8 Future
Matrix Square Root Finding With O(g6) 9 Tracking Control of Serial and
Parallel Manipulators 10 Future Matrix Inversion with Sometimes-Singular
Coefficient Matrix 11 Repetitive Motion Control of Redundant Manipulators
12 Future Different-Layer Equation System Solving 13 Future Matrix
Equations Solving 14 Minimum Joint Motion Control of Redundant Manipulators
15 Euler-Precision General Formula of ZTD 16 Lagrange
Numerical-Differentiation Formulas
Quadratic Programming 3 Future Matrix Inversion With Noises 4 Future Matrix
Pseudoinversion 5 Future Constrained Nonlinear Optimization With O(g3) 6
Future Unconstrained Nonlinear Optimization With O(g4) 7 Future
Different-Layer Inequation-Equation System Solving With O(g5) 8 Future
Matrix Square Root Finding With O(g6) 9 Tracking Control of Serial and
Parallel Manipulators 10 Future Matrix Inversion with Sometimes-Singular
Coefficient Matrix 11 Repetitive Motion Control of Redundant Manipulators
12 Future Different-Layer Equation System Solving 13 Future Matrix
Equations Solving 14 Minimum Joint Motion Control of Redundant Manipulators
15 Euler-Precision General Formula of ZTD 16 Lagrange
Numerical-Differentiation Formulas