Claus P. Schnorr
Zufälligkeit und Wahrscheinlichkeit (eBook, PDF)
Eine algorithmische Begründung der Wahrscheinlichkeitstheorie
-23%11
26,99 €
34,95 €**
26,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
13 °P sammeln
-23%11
26,99 €
34,95 €**
26,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
13 °P sammeln
Als Download kaufen
34,95 €****
-23%11
26,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
13 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
34,95 €****
-23%11
26,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
13 °P sammeln
Claus P. Schnorr
Zufälligkeit und Wahrscheinlichkeit (eBook, PDF)
Eine algorithmische Begründung der Wahrscheinlichkeitstheorie
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 10.49MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 212
- Erscheinungstermin: 3. Dezember 2007
- Deutsch
- ISBN-13: 9783540368830
- Artikelnr.: 53108053
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Vorwort und Einleitung.- Kritik der Maß-Wahrscheinlichkeitstheorie.- Der naive Begriff des Kollektivs nach VON MISES.- Erste Ansätze zur widerspruchsfreien Definition der Kollektive und ihre Kritik durch VILLE.- Hyperzufällige Folgen.- Hyperzufällige Folgen und das Prinzip vom ausgeschlossenen Spielsystem.- Charakterisierung hyperzufälliger Folgen durch Invarianzeigenschaften.- Weitere Einwände gegen den Begriff der Zufallsfolge im Sinne von MARTIN-LÖF.- Charakterisierung der Zufallsfolgen durch konstruktive Nullmengen nach L.E.J. BROUWER.- Charakterisierung von Zufallsfolgen durch das Prinzip vom ausgeschlossenen Spielsystem.- Darstellung des starken Gesetzes der großen Zahlen durch Martingale.- Invarianzeigenschaften von Zufallsfolgen.- Charakterisierung der Zufallsfolgen durch Invarianzeigenschaften.- Einige modifizierte Spielsysteme.- Zufallsfolgen als optimale Folgen für die Bank.- Die Programmkomplexität nach KOLMOGOROFF.- Die Ordnung eines Zufallsgesetzes.- Zufallsgesetze von exponentieller Ordnung.- Voraussagbare und quasi-rekursive Folgen.- Durch endliche Automaten darstellbare Zufallsgesetze.- Raum- und Zeitkomplexität rekursiver Funktionen.- Die Komplexität von Zufallsgesetzen und der Zufallsgrad von Folgen.- Invarianzeigenschaften der Komplexitätsklassen von Pseudozufallsfolgen.- Berechenbare Wahrscheinlichkeitsmaße auf lcub;0, 1rcub;.- Verteilungsunabhängige Sequentialtests.- Verteilungsunabhängige Invarianzeigenschaften von Zufallsfolgen.- Zufallsfolgen zu Wahrscheinlichkeitsmaßen auf R.
Vorwort und Einleitung.- Kritik der Maß-Wahrscheinlichkeitstheorie.- Der naive Begriff des Kollektivs nach VON MISES.- Erste Ansätze zur widerspruchsfreien Definition der Kollektive und ihre Kritik durch VILLE.- Hyperzufällige Folgen.- Hyperzufällige Folgen und das Prinzip vom ausgeschlossenen Spielsystem.- Charakterisierung hyperzufälliger Folgen durch Invarianzeigenschaften.- Weitere Einwände gegen den Begriff der Zufallsfolge im Sinne von MARTIN-LÖF.- Charakterisierung der Zufallsfolgen durch konstruktive Nullmengen nach L.E.J. BROUWER.- Charakterisierung von Zufallsfolgen durch das Prinzip vom ausgeschlossenen Spielsystem.- Darstellung des starken Gesetzes der großen Zahlen durch Martingale.- Invarianzeigenschaften von Zufallsfolgen.- Charakterisierung der Zufallsfolgen durch Invarianzeigenschaften.- Einige modifizierte Spielsysteme.- Zufallsfolgen als optimale Folgen für die Bank.- Die Programmkomplexität nach KOLMOGOROFF.- Die Ordnung eines Zufallsgesetzes.- Zufallsgesetze von exponentieller Ordnung.- Voraussagbare und quasi-rekursive Folgen.- Durch endliche Automaten darstellbare Zufallsgesetze.- Raum- und Zeitkomplexität rekursiver Funktionen.- Die Komplexität von Zufallsgesetzen und der Zufallsgrad von Folgen.- Invarianzeigenschaften der Komplexitätsklassen von Pseudozufallsfolgen.- Berechenbare Wahrscheinlichkeitsmaße auf lcub;0, 1rcub;.- Verteilungsunabhängige Sequentialtests.- Verteilungsunabhängige Invarianzeigenschaften von Zufallsfolgen.- Zufallsfolgen zu Wahrscheinlichkeitsmaßen auf R.