13,99 €
Statt 15,95 €**
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
13,99 €
Statt 15,95 €**
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 15,95 €****
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 15,95 €****
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Studienarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,3, Hochschule Darmstadt, Veranstaltung: Computer Vision, Sprache: Deutsch, Abstract: In der Überwachungstechnik ist das maschinelle Sehen von großer Bedeutung, welches durch Computer Vision Methoden ermöglicht wird. Beim maschinellen Sehen wird zwischen der Lokalisierung (engl. detection) und der Erkennung (engl. recognition) unterschieden. Diese Arbeit beschäftigt sich mit der Lokalisierung von Gesichtern. Aus diesem Grund wird in dieser Arbeit ein Verfahren zur Detektion von Gesichtern in…mehr

Produktbeschreibung
Studienarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,3, Hochschule Darmstadt, Veranstaltung: Computer Vision, Sprache: Deutsch, Abstract: In der Überwachungstechnik ist das maschinelle Sehen von großer Bedeutung, welches durch Computer Vision Methoden ermöglicht wird. Beim maschinellen Sehen wird zwischen der Lokalisierung (engl. detection) und der Erkennung (engl. recognition) unterschieden. Diese Arbeit beschäftigt sich mit der Lokalisierung von Gesichtern. Aus diesem Grund wird in dieser Arbeit ein Verfahren zur Detektion von Gesichtern in Drohnenaufnahmen vorgestellt. Als Drohne wurde die Ryze Tello Edu 1 eingesetzt. Die Detektion von Gesichtern wurde mithilfe der Bibliothek OpenCV umgesetzt. Als Algorithmus zur Lokalisierung der Gesichter wurde die Viola-Jones Methode verwendet. Im Ergebnis hat sich gezeigt, dass das verwendete Verfahren bei frontalen Gesichtern stabil funktioniert, allerdings bei seitlichen Gesichtern Probleme aufweist. Außerdem konnte mithilfe einer Parameteroptimierung die Anzahl der False Positives deutlich reduziert werden.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Janik Tinz, geb.1996, hat einen Bachelor Abschluss in Informatik und einen Master Abschluss in Data Science. Seine Forschungsthemen liegen im Bereich des Maschinellen Lernens. Er setzt sich derzeit mit dem Einsatz von Maschinellem Lernen in der Finanzbranche auseinander.