Helmut Wunderling, Hartmut Adelsberger
Schülkes Tafeln
Funktionswerte Zahlenwerte Formeln
Mitwirkender: Adelsberger, Hartmut; Wunderling, Helmut
Helmut Wunderling, Hartmut Adelsberger
Schülkes Tafeln
Funktionswerte Zahlenwerte Formeln
Mitwirkender: Adelsberger, Hartmut; Wunderling, Helmut
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Die Schülkeschen Tafeln haben sich seit ihrem ersten Erscheinen im Jahre 1895 einen festen Platz unter den Hilfsmitteln des mathematischen und naturwissenschaftlichen Unterrichts erworben. Seither unterliegen sie einer laufenden Überprüfung, Erneuerung und Erweiterung.
Andere Kunden interessierten sich auch für
- Friedrich KemnitzMathematische Formelsammlung44,99 €
- Ewald BachTechnische Physik Formel- und Tabellensammlung23,70 €
- Wolfgang GohoutFormelsammlung Mathematik und Statistik27,70 €
- Roland GomeringerTabellenbuch Metall mit Formelsammlung30,30 €
- Andreas GasserTechnische Mechanik und Festigkeitslehre. Formel- und Tabellensammlung19,95 €
- Formelsammlung Elektroberufe ( Energietechnik)8,50 €
- Bernd MattheusTechnische Mechanik Formel- und Tabellensammlung15,90 €
-
-
-
Die Schülkeschen Tafeln haben sich seit ihrem ersten Erscheinen im Jahre 1895 einen festen Platz unter den Hilfsmitteln des mathematischen und naturwissenschaftlichen Unterrichts erworben. Seither unterliegen sie einer laufenden Überprüfung, Erneuerung und Erweiterung.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Vieweg+Teubner / Vieweg+Teubner Verlag
- Artikelnr. des Verlages: 85015890, 978-3-519-32550-5
- 59. Aufl.
- Seitenzahl: 92
- Erscheinungstermin: 12. Dezember 2000
- Deutsch
- Abmessung: 244mm x 170mm x 6mm
- Gewicht: 180g
- ISBN-13: 9783519325505
- ISBN-10: 3519325500
- Artikelnr.: 00604765
- Verlag: Vieweg+Teubner / Vieweg+Teubner Verlag
- Artikelnr. des Verlages: 85015890, 978-3-519-32550-5
- 59. Aufl.
- Seitenzahl: 92
- Erscheinungstermin: 12. Dezember 2000
- Deutsch
- Abmessung: 244mm x 170mm x 6mm
- Gewicht: 180g
- ISBN-13: 9783519325505
- ISBN-10: 3519325500
- Artikelnr.: 00604765
Studiendirektor Helmut Wunderling, Berlin Oberstudienrat Hartmut Adelsberger, Berlin
Umrechnungen.- Konstanten.- Die Logarithmen von 1000 ? 1099 5stellig, von 100 ? 499 4stellig.- lg sin 0° ? lg sin 45° Für kleine Winkel 0° < ? < 3,2° s. Hinweis auf U2.- sin 0 sin 45°.- tan 0° ? tan 45°.- Bogenlängen, Kreisumfang und -inhalt, ?n, 3?n.- Kreis- und Hyperbelfunktionen, e x , e -x , In x.- e -x2, Gauß-Verteilung G (0; 1; x).- Binomialzahlen % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % qhaaWcbaGaam4Aaaqaaiaad6gaaaaakiaawIcacaGLPaaacqGH9aqp % daqadaqaamaaDaaaleaacaWGUbGaeyOeI0Iaam4Aaaqaaiaad6gaaa % aakiaawIcacaGLPaaacaGG6aGaeyypa0ZaaSaaaeaacaWGUbGaamiB % aaqaaiaadUgacaWGSbGaaiikaiaad6gacqGHsislcaWGRbGaaiykai % aadYgaaaaaaa!4AD3! $$ left( {_k^n} right) = left( {_{n - k}^n} right): = frac{{nl}}{{kl(n - k)l}} $$ .- Bernoulli (Binomial)-Verteilung B (n;p;x):= % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaDa % aaleaacaWG4baabaGaamOBaaaakiaacMcacaWGWbWaaWbaaSqabeaa % caWG4baaaOGaamyCamaaCaaaleqabaGaamOBaiabgkHiTiaadIhaaa % GccaGG7aGaamiCaiabgUcaRiaadghacqGH9aqpcaaIXaaaaa!44F4!! $$ (_x^n){p^x}{q^{n - x}};p + q = 1 $$ .- Bernoulli (Binom.)-Vert. kumul. % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr %4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca % WGcbGaaiikaiaad6gacaGG6aGaamiCaiaacUdacaWGPbGaaiykaiab % g2da9maaqahabaGaaiikamaaDaaaleaacaWGQbaabaGaamOBaaaaki % aacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamiEaaqdcqGHris5 % aaWcbaGaamyAaiabg2da9iaaicdaaeaacaWG4baaniabggHiLdGcca % WGWbWaaWbaaSqabeaacaWGPbaaaOGaeyyXICTaamyCamaaCaaaleqa % baGaamOBaiabgkHiTiaadMgaaaaaaa!5518! $$ sumlimits_{i = 0}^x {B(n:p;i) = sumlimits_{i = 0}^x {(_j^n)} } {p^i} cdot {q^{n - i}} $$ .- Poisson-Verteilung % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI % cacqaH8oqBcaGG7aGaamiEaiaacMcacaGG6aGaeyypa0ZaaSaaaeaa % cqaH8oqBdaahaaWcbeqaaiaadIhaaaaakeaacaWG4bGaamiBaaaaca % WGLbWaaWbaaSqabeaacqGHsislcqaH8oqBaaaaaa!45FA! $$ P(mu ;x): = frac{{{mu ^x}}}{{xl}}{e^{ - mu }} $$ .- Potenzen und Fakultäten Fortsetzung Tafel 13: Poisson-Verteilung.- ? 2-Verteilung kumulativ.- Allgemeine Sterbetafel 1983/85 (Bundesgebiet einschl. Berlin West).- Deutsche Sterbetafeln v. 1871/80 bis 1970/72 in verkürzter Form.- Zinseszins.- Nomogramme für Exponential- und Potenzfunktionen.- Physikalische Größen und Konstanten.- Atomphysikalische Tabellen.- Sternzeit, Deklination der Sonne, Zeitgleichung.- Die Lage einiger Orte, Sternwarten (S) und Flugplätze (F).- Astronomische Konstanten.- Mathematische Formeln und Sätze.
Umrechnungen.- Konstanten.- Die Logarithmen von 1000 ? 1099 5stellig, von 100 ? 499 4stellig.- lg sin 0° ? lg sin 45° Für kleine Winkel 0° < ? < 3,2° s. Hinweis auf U2.- sin 0 sin 45°.- tan 0° ? tan 45°.- Bogenlängen, Kreisumfang und -inhalt, ?n, 3?n.- Kreis- und Hyperbelfunktionen, e x , e -x , In x.- e -x2, Gauß-Verteilung G (0; 1; x).- Binomialzahlen % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % qhaaWcbaGaam4Aaaqaaiaad6gaaaaakiaawIcacaGLPaaacqGH9aqp % daqadaqaamaaDaaaleaacaWGUbGaeyOeI0Iaam4Aaaqaaiaad6gaaa % aakiaawIcacaGLPaaacaGG6aGaeyypa0ZaaSaaaeaacaWGUbGaamiB % aaqaaiaadUgacaWGSbGaaiikaiaad6gacqGHsislcaWGRbGaaiykai % aadYgaaaaaaa!4AD3! $$ left( {_k^n} right) = left( {_{n - k}^n} right): = frac{{nl}}{{kl(n - k)l}} $$ .- Bernoulli (Binomial)-Verteilung B (n;p;x):= % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaDa % aaleaacaWG4baabaGaamOBaaaakiaacMcacaWGWbWaaWbaaSqabeaa % caWG4baaaOGaamyCamaaCaaaleqabaGaamOBaiabgkHiTiaadIhaaa % GccaGG7aGaamiCaiabgUcaRiaadghacqGH9aqpcaaIXaaaaa!44F4!! $$ (_x^n){p^x}{q^{n - x}};p + q = 1 $$ .- Bernoulli (Binom.)-Vert. kumul. % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr %4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca % WGcbGaaiikaiaad6gacaGG6aGaamiCaiaacUdacaWGPbGaaiykaiab % g2da9maaqahabaGaaiikamaaDaaaleaacaWGQbaabaGaamOBaaaaki % aacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamiEaaqdcqGHris5 % aaWcbaGaamyAaiabg2da9iaaicdaaeaacaWG4baaniabggHiLdGcca % WGWbWaaWbaaSqabeaacaWGPbaaaOGaeyyXICTaamyCamaaCaaaleqa % baGaamOBaiabgkHiTiaadMgaaaaaaa!5518! $$ sumlimits_{i = 0}^x {B(n:p;i) = sumlimits_{i = 0}^x {(_j^n)} } {p^i} cdot {q^{n - i}} $$ .- Poisson-Verteilung % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI % cacqaH8oqBcaGG7aGaamiEaiaacMcacaGG6aGaeyypa0ZaaSaaaeaa % cqaH8oqBdaahaaWcbeqaaiaadIhaaaaakeaacaWG4bGaamiBaaaaca % WGLbWaaWbaaSqabeaacqGHsislcqaH8oqBaaaaaa!45FA! $$ P(mu ;x): = frac{{{mu ^x}}}{{xl}}{e^{ - mu }} $$ .- Potenzen und Fakultäten Fortsetzung Tafel 13: Poisson-Verteilung.- ? 2-Verteilung kumulativ.- Allgemeine Sterbetafel 1983/85 (Bundesgebiet einschl. Berlin West).- Deutsche Sterbetafeln v. 1871/80 bis 1970/72 in verkürzter Form.- Zinseszins.- Nomogramme für Exponential- und Potenzfunktionen.- Physikalische Größen und Konstanten.- Atomphysikalische Tabellen.- Sternzeit, Deklination der Sonne, Zeitgleichung.- Die Lage einiger Orte, Sternwarten (S) und Flugplätze (F).- Astronomische Konstanten.- Mathematische Formeln und Sätze.