109,95 €
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
55 °P sammeln
109,95 €
109,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
55 °P sammeln
Als Download kaufen
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
55 °P sammeln
Jetzt verschenken
109,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
55 °P sammeln
  • Format: ePub

Practical Time Series Analysis for Data Science is an accessible guide that doesn't require a background in calculus to be engaging but does not shy away from deeper explanations of the techniques discussed.

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 74.63MB
Produktbeschreibung
Practical Time Series Analysis for Data Science is an accessible guide that doesn't require a background in calculus to be engaging but does not shy away from deeper explanations of the techniques discussed.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Wayne Woodward, Bivin Sadler, Stephen Robertson

Rezensionen
"A well-structured text aimed at undergraduates pursuing a data science curriculum, or MBA students. The authors draw upon their vast combined experience in research and teaching to a variety of audiences to present the classical material on ARMA-based Box-Jenkins methodology without assuming a calculus background. Yet, their approach manages to be heuristic, while not sacrificing relevant theoretical detail that enriches understanding. The authors complement this material with chapters on multivariate models, and, refreshingly, a very enlightening discussion on neural networks. The exposition is lucid, well-organized, and copiously illustrated to reinforce comprehension of concepts. The companion R package (tswge) finds a niche in the growing list of time series toolboxes, by providing clean, straightforward functionality on such essentials as spectrum reconstruction and model factor tables to glean the structure of AR and MA polynomials."
- Alex Trindade, Texas Tech University