Biomass Energy with Carbon Capture and Storage (Beccs)
Unlocking Negative Emissions
Herausgeber: Gough, Clair; Lea-Langton, Amanda; Vaughan, Naomi; Mander, Sarah; Thornley, Patricia
Biomass Energy with Carbon Capture and Storage (Beccs)
Unlocking Negative Emissions
Herausgeber: Gough, Clair; Lea-Langton, Amanda; Vaughan, Naomi; Mander, Sarah; Thornley, Patricia
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An Essential Resource for Understanding the Potential Role for Biomass Energy with Carbon Capture and Storage in Addressing Climate Change Biomass Energy with Carbon Capture and Storage (BECCS) offers a comprehensive review of the characteristics of BECCS technologies in relation to its various applications. The authors -- a team of expert professionals -- bring together in one volume the technical, scientific, social, economic and governance issues relating to the potential deployment of BECCS as a key approach to climate change mitigation. The text contains information on the current and…mehr
- Cutting-Edge Technology for Carbon Capture, Utilization, and Storage283,99 €
- Carbon Dioxide Capture and Acid Gas Injection276,99 €
- Process Systems and Materials for CO2 Capture292,99 €
- Geologically Storing Carbon141,99 €
- PuttgenElectricity: Humanity's Low-Carbon Future - Safeguarding Our Ecological Niche64,99 €
- National Academy Of EngineeringTechnological Trajectories and the Human Environment62,99 €
- John J CarrollAcid Gas Injection and Carbon Dioxide Sequestration259,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 336
- Erscheinungstermin: 2. Oktober 2018
- Englisch
- Abmessung: 246mm x 175mm x 23mm
- Gewicht: 676g
- ISBN-13: 9781119237723
- ISBN-10: 1119237726
- Artikelnr.: 50656321
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 336
- Erscheinungstermin: 2. Oktober 2018
- Englisch
- Abmessung: 246mm x 175mm x 23mm
- Gewicht: 676g
- ISBN-13: 9781119237723
- ISBN-10: 1119237726
- Artikelnr.: 50656321
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Change Mitigation 4 1.3 Negative Emissions Technologies 7 1.4 Why BECCS? 8 1.5 Structure of the Book 10 1.5.1 Part I: BECCS Technologies 10 1.5.2 Part II: BECCS System Assessments 12 1.5.3 Part III: BECCS in the Energy System 13 1.5.4 Part IV: Summary and Conclusions 14 References 14 2 The Supply of Biomass for Bioenergy Systems 17 Andrew Welfle and Raphael Slade 2.1 Introduction 17 2.2 Biomass Resource Demand 18 2.3 Resource Demand for BECCS Technologies 18 2.4 Forecasting the Availability of Biomass Resources 19 2.4.1 Modelling Non
Renewable Resources 20 2.4.2 Modelling Renewable Resources 21 2.4.2.1 Biomass Resource Modelling 21 2.4.3 Modelling Approaches - Bottom
Up versus Top
Down 23 2.5 Methods for Forecasting the Availability of Energy Crop Resources 24 2.6 Forecasting the Availability of Wastes and Residues From Ongoing Processes 25 2.7 Forecasting the Availability of Forestry Resources 26 2.8 Forecasting the Availability of Waste Resources 27 2.9 Biomass Resource Availability 28 2.10 Variability in Biomass Resource Forecasts 31 2.11 Biomass Supply and Demand Regions, and Key Trade Flows 33 2.11.1 Trade Hub Europe 33 2.11.2 Bioethanol - Key Global Trade Flows 34 2.11.3 Biodiesel - Key Global Trade Flows 34 2.11.4 Wood Pellets - Key Global Trade Flows 35 2.11.5 Wood Chip - Key Global Trade Flows 35 2.12 Global Biomass Trade Limitations and Uncertainty 36 2.12.1 Technical Barriers 36 2.12.2 Economic and Trade Barriers 36 2.12.3 Logistical Barriers 37 2.12.4 Regulatory Barriers 37 2.12.5 Geopolitical Barriers 38 2.13 Sustainability of Global Biomass Resource Production 38 2.13.1 Potential Land
Use Change Impacts 38 2.13.2 The 'Land for Food versus Land for Energy' Question 39 2.13.3 Potential Social Impacts 39 2.13.4 Potential Ecosystem and Biodiversity Impacts 40 2.13.5 Potential Water Impacts 40 2.13.6 Potential Air
Quality Impacts 41 2.14 Conclusions - Biomass Resource Potential and BECCS 41 References 42 3 Post
combustion and Oxy
combustion Technologies 47 Karen N. Finney, Hannah Chalmers, Mathieu Lucquiaud, Juan Riaza, János Szuhánszki and Bill Buschle 3.1 Introduction 47 3.2 Air Firing with Post
combustion Capture 48 3.2.1 Wet Scrubbing Technologies: Solvent
Based Capture Using Chemical Absorption 49 3.2.1.1 Amine
Based Capture 50 3.2.1.2 Steam Extraction for Solvent Regeneration 51 3.2.2 Membrane Separation 51 3.2.3 Brief Overview of Other Separation Methods 52 3.3 Oxy
Fuel Combustion 52 3.3.1 Oxy
Combustion of Biomass Using Flue Gas Recirculation 53 3.3.2 Enriched
Air Combustion 54 3.4 Challenges Associated with Biomass Utilisation Under BECCS Operating Conditions 55 3.4.1 Impacts of Biomass Trace Elements on Post
combustion Capture Performance 55 3.4.1.1 Alkali Metals 55 3.4.1.2 Transition Metals 56 3.4.1.3 Acidic Elements 57 3.4.1.4 Particulate Matter 57 3.4.1.5 Biomass
Specific Solvents for Post
combustion BECCS 57 3.4.2 Biomass Combustion Challenges for Oxy
Fuel Capture 58 3.4.2.1 Fuel Milling 59 3.4.2.2 Flame Temperature 59 3.4.2.3 Heat Transfer 59 3.4.2.4 Particle Heating, Ignition and Flame Propagation 59 3.4.2.5 Burnout 60 3.4.2.6 Emissions 60 3.4.2.7 Corrosion 60 3.5 Summary and Conclusions: Synopsis of Technical Knowledge and Assessment of Deployment Potential 61 References 63 4 Pre
combustion Technologies 67 Amanda LeäLangton and Gordon Andrews 4.1 Introduction 67 4.2 The Integrated Gasification Combined Cycle (IGCC) 68 4.3 Gasification of Solid Fuels 69 4.4 Carbon Dioxide Separation Technologies 76 4.4.1 Physical Absorption 76 4.4.2 Adsorption Processes 77 4.4.3 Clathrate Hydrates 77 4.4.4 Membrane Technologies 77 4.4.5 Cryogenic Separation 78 4.4.6 Post
combustion Chilled Ammonia 78 4.5 Chemical Looping Processes 78 4.6 Existing Schemes 79 4.7 Modelling of IGCC Plant Thermal Efficiency With and Without Pre
combustion CCS 80 4.8 Summary and Research Challenges 85 References 87 5 Techno
economics of Biomass
based Power Generation with CCS Technologies for Deployment in 2050 93 Amit Bhave, Paul Fennell, Niall Mac Dowell, Nilay Shah and Richard H.S. Taylor 5.1 Introduction 94 5.2 Case Study Analysis 101 Acknowledgements 113 References 113 Part II BECCS System Assessments 115 6 Life Cycle Assessment 117 Temitope Falano and Patricia Thornley 6.1 Introduction 117 6.2 Rationale for Supply
Chain Life
Cycle Assessment 117 6.3 Variability in Life
Cycle Assessment of Bioenergy Systems 120 6.3.1 Variability Related to Scope of System 120 6.3.1.1 Land
Use Emissions 120 6.3.1.2 Land
Use Change Emissions 121 6.3.1.3 Indirect Land
Use Change Emissions 121 6.3.2 Variability Related to Methodology 122 6.3.3 Variability Related to System Definition 122 6.3.4 Variability Related to Assumptions 122 6.4 Published LCAs of BECCS 123 6.5 Sensitivity Analysis of Reported Carbon Savings to Key System Parameters 124 6.5.1 Impact of CO2 Capture Efficiency 124 6.5.2 Variation of Energy Requirement Associated with CO2 Capture 125 6.5.3 Variation of Biomass Yield 125 6.6 Conclusions 125 References 126 7 System Characterisation of Carbon Capture and Storage (CCS) Systems 129 Geoffrey P. Hammond 7.1 Introduction 129 7.1.1 Background 129 7.1.2 The Issues Considered 131 7.2 CCS Process Characterisation, Innovation and Deployment 131 7.2.1 CCS Process Characterisation 131 7.2.2 CCS Innovation and Deployment 133 7.3 CCS Options for the United Kingdom 135 7.4 The Sustainability Assessment Context 136 7.4.1.1 The Environmental Pillar 136 7.4.1.2 The Economic Pillar 137 7.4.1.3 The Social Pillar 137 7.5 CCS Performance Metrics 138 7.5.1 Energy Analysis and Metrics 138 7.5.2 Carbon Accounting and Related Parameters 139 7.5.3 Economic Appraisal and Indicators 140 7.6 CCS System Characterisation 141 7.6.1 CO2 Capture 141 7.6.1.1 Technical Exemplars 141 7.6.1.2 Energy Metrics 141 7.6.1.3 Carbon Emissions 142 7.6.1.4 Economic Indicators 145 7.6.2 CO2 Transport and Clustering 147 7.6.3 CO2 Storage 149 7.6.3.1 Storage Options and Capacities 149 7.6.3.2 Storage Site Risks, Environmental Impacts and Monitoring 150 7.6.3.3 Storage Economics 152 7.6.4 Whole CCS Chain Assessment 153 7.7 Concluding Remarks 156 Acknowledgments 157 References 158 8 The System Value of Deploying Bioenergy with CCS (BECCS) in the United Kingdom 163 Geraldine Newton
Cross and Dennis Gammer 8.1 Background 163 8.1.1 Why BECCS? 163 8.1.2 Critical Knowledge Gaps 168 8.2 Context 168 8.2.1 Bioenergy 168 8.2.2 Bioenergy with CCS 169 8.3 Progressing our Understanding of the Key Uncertainties Associated with BECCS 170 8.3.1 Can a Sufficient Level of BECCS Be Deployed in the United Kingdom to Support Cost-Effective Decarbonisation Pathways for the United Kingdom out to 2050? 170 8.3.2 What are the Right Combinations of Feedstock, Preprocessing, Conversion and Carbon
Capture Technologies to Deploy for Bioenergy Production in the United Kingdom? 174 8.3.2.1 Optimising Feedstock Properties for Future Bioenergy Conversion Technologies 174 8.3.2.2 BECCS Value Chains: What Carbon
Capture Technologies Do we Need to Develop? 175 8.3.3 How can we Deliver the Greatest Emissions Savings from Bioenergy and BECCS in the United Kingdom? 176 8.3.4 How Much CO2 Could Be Stored from UK Sources and How Do we Monitor These Stores Efficiently and Safely? 178 8.3.4.1 Storage Potential 178 8.3.4.2 Managing the Risks of Storage 178 8.4 Conclusion: Completing the BECCS Picture 180 8.4.1 Next Steps 180 References 181 Part III BECCS in the Energy System 185 9 The Climate
Change Mitigation Challenge 187 Sarah Mander, Kevin Anderson, Alice Larkin, Clair Gough and Naomi Vaughan 9.1 Introduction 187 9.2 Cumulative Emissions and Atmospheric CO2 Concentration for 2°C Commitments 188 9.3 The Role of BECCS for Climate
Change Mitigation - A Summary of BECCS within Integrated Assessment Modelling 190 9.3.1 Key Assumptions 194 9.4 Implications and Consequences of BECCS 194 9.5 Conclusions: Can BECCS Deliver what's Expected of it? 199 References 200 10 The Future for Bioenergy Systems: The Role of BECCS? 205 Gabrial Anandarajah, Olivier Dessens and Will McDowall 10.1 Introduction 205 10.2 Methodology 206 10.2.1 TIAM
UCL 206 10.2.2 Representation of Bioenergy and CCS Technologies in TIAM
UCL 208 10.2.3 Scenario Definitions 209 10.3 Results and Discussions 211 10.3.1 2°C Scenarios With and Without BECCS 211 10.3.2 Sensitivity Around Availability of Sustainable Bioenergy 215 10.3.3 1.5 °C Scenarios 221 10.4 Discussion and Conclusions 224 References 225 11 Policy Frameworks and Supply
Chain Accounting 227 Patricia Thornley and Alison Mohr 11.1 Introduction 227 11.2 The Origin and Use of Supply
Chain Analysis in Bioenergy Systems 228 11.2.1 Rationale for Systems
Level Evaluation 228 11.2.2 Importance and Significance of Scope of System 230 11.2.3 Importance and Significance of Breadth of Analysis 231 11.3 Policy Options 232 11.3.1 Objectives of BECCS Policy 232 11.3.2 Review of Existing Policy Frameworks 234 11.3.2.1 International Policy Frameworks 234 11.3.2.1.1 United Nations Framework Convention on Climate Change 234 11.3.2.1.2 EU Emissions Trading System 236 11.3.2.1.3 Renewable Energy Directive and Fuel Quality Directive 236 11.3.2.2 National Policy Frameworks in the United Kingdom 237 11.3.2.2.1 Renewables Obligation and Contracts for Difference 237 11.3.2.2.2 Renewable Transport Fuel Obligation 238 11.4 Ensuring Environmental, Economic and Social Sustainability of a BECCS System 238 11.4.1 Environmental Sustainability and System Scope 238 11.4.2 Economic Sustainability and System Scope 240 11.4.3 Social Sustainability and System Scope 241 11.4.4 Trade
Offs Between Different Sustainability Components 243 11.5 Governance of BECCS Systems 245 11.6 Conclusions: The Future of BECCS Policy and Governance 247 References 248 12 Social and Ethical Dimensions of BECCS 251 Clair Gough, Leslie Mabon and Sarah Mander 12.1 Introduction 251 12.2 Fossil Fuels and BECCS 252 12.3 Alternative Approaches 254 12.3.1 Negative Emissions Approaches and CDR 254 12.3.2 Different Mitigation Approaches 256 12.4 Sustainable Decarbonisation 257 12.5 Societal Responses 258 12.6 Justice 262 12.6.1 Distributional Justice 262 12.6.2 Procedural Justice 263 12.6.3 Financial Justice 265 12.6.4 Intergenerational Justice 267 12.6.5 Summary 268 12.7 Summary 269 References 270 13 Unlocking Negative Emissions 277 Clair Gough, Patricia Thornley, Sarah Mander, Naomi Vaughan and Amanda LeäLangton 13.1 Introduction 277 13.2 Summary of Chapters 277 13.3 Unlocking Negative Emissions: System
Level Challenges 282 13.3.1 Terminology, Scale and Quantification 282 13.3.2 Non
Technological Challenges 284 13.3.3 Technical Challenges 287 13.4 Can Negative Emissions be Unlocked? 287 13.4.1 Do we Need This Technology? 288 13.4.2 Can it Work? 288 13.4.3 Does the Focus on BECCS Distract From the Imperative to Radically Reduce Demand and Transform the Global Energy System? 288 13.4.4 How Can BECCS Unlock Negative Emissions? 289 13.5 Summing Up 290 References 290 Index 291
Change Mitigation 4 1.3 Negative Emissions Technologies 7 1.4 Why BECCS? 8 1.5 Structure of the Book 10 1.5.1 Part I: BECCS Technologies 10 1.5.2 Part II: BECCS System Assessments 12 1.5.3 Part III: BECCS in the Energy System 13 1.5.4 Part IV: Summary and Conclusions 14 References 14 2 The Supply of Biomass for Bioenergy Systems 17 Andrew Welfle and Raphael Slade 2.1 Introduction 17 2.2 Biomass Resource Demand 18 2.3 Resource Demand for BECCS Technologies 18 2.4 Forecasting the Availability of Biomass Resources 19 2.4.1 Modelling Non
Renewable Resources 20 2.4.2 Modelling Renewable Resources 21 2.4.2.1 Biomass Resource Modelling 21 2.4.3 Modelling Approaches - Bottom
Up versus Top
Down 23 2.5 Methods for Forecasting the Availability of Energy Crop Resources 24 2.6 Forecasting the Availability of Wastes and Residues From Ongoing Processes 25 2.7 Forecasting the Availability of Forestry Resources 26 2.8 Forecasting the Availability of Waste Resources 27 2.9 Biomass Resource Availability 28 2.10 Variability in Biomass Resource Forecasts 31 2.11 Biomass Supply and Demand Regions, and Key Trade Flows 33 2.11.1 Trade Hub Europe 33 2.11.2 Bioethanol - Key Global Trade Flows 34 2.11.3 Biodiesel - Key Global Trade Flows 34 2.11.4 Wood Pellets - Key Global Trade Flows 35 2.11.5 Wood Chip - Key Global Trade Flows 35 2.12 Global Biomass Trade Limitations and Uncertainty 36 2.12.1 Technical Barriers 36 2.12.2 Economic and Trade Barriers 36 2.12.3 Logistical Barriers 37 2.12.4 Regulatory Barriers 37 2.12.5 Geopolitical Barriers 38 2.13 Sustainability of Global Biomass Resource Production 38 2.13.1 Potential Land
Use Change Impacts 38 2.13.2 The 'Land for Food versus Land for Energy' Question 39 2.13.3 Potential Social Impacts 39 2.13.4 Potential Ecosystem and Biodiversity Impacts 40 2.13.5 Potential Water Impacts 40 2.13.6 Potential Air
Quality Impacts 41 2.14 Conclusions - Biomass Resource Potential and BECCS 41 References 42 3 Post
combustion and Oxy
combustion Technologies 47 Karen N. Finney, Hannah Chalmers, Mathieu Lucquiaud, Juan Riaza, János Szuhánszki and Bill Buschle 3.1 Introduction 47 3.2 Air Firing with Post
combustion Capture 48 3.2.1 Wet Scrubbing Technologies: Solvent
Based Capture Using Chemical Absorption 49 3.2.1.1 Amine
Based Capture 50 3.2.1.2 Steam Extraction for Solvent Regeneration 51 3.2.2 Membrane Separation 51 3.2.3 Brief Overview of Other Separation Methods 52 3.3 Oxy
Fuel Combustion 52 3.3.1 Oxy
Combustion of Biomass Using Flue Gas Recirculation 53 3.3.2 Enriched
Air Combustion 54 3.4 Challenges Associated with Biomass Utilisation Under BECCS Operating Conditions 55 3.4.1 Impacts of Biomass Trace Elements on Post
combustion Capture Performance 55 3.4.1.1 Alkali Metals 55 3.4.1.2 Transition Metals 56 3.4.1.3 Acidic Elements 57 3.4.1.4 Particulate Matter 57 3.4.1.5 Biomass
Specific Solvents for Post
combustion BECCS 57 3.4.2 Biomass Combustion Challenges for Oxy
Fuel Capture 58 3.4.2.1 Fuel Milling 59 3.4.2.2 Flame Temperature 59 3.4.2.3 Heat Transfer 59 3.4.2.4 Particle Heating, Ignition and Flame Propagation 59 3.4.2.5 Burnout 60 3.4.2.6 Emissions 60 3.4.2.7 Corrosion 60 3.5 Summary and Conclusions: Synopsis of Technical Knowledge and Assessment of Deployment Potential 61 References 63 4 Pre
combustion Technologies 67 Amanda LeäLangton and Gordon Andrews 4.1 Introduction 67 4.2 The Integrated Gasification Combined Cycle (IGCC) 68 4.3 Gasification of Solid Fuels 69 4.4 Carbon Dioxide Separation Technologies 76 4.4.1 Physical Absorption 76 4.4.2 Adsorption Processes 77 4.4.3 Clathrate Hydrates 77 4.4.4 Membrane Technologies 77 4.4.5 Cryogenic Separation 78 4.4.6 Post
combustion Chilled Ammonia 78 4.5 Chemical Looping Processes 78 4.6 Existing Schemes 79 4.7 Modelling of IGCC Plant Thermal Efficiency With and Without Pre
combustion CCS 80 4.8 Summary and Research Challenges 85 References 87 5 Techno
economics of Biomass
based Power Generation with CCS Technologies for Deployment in 2050 93 Amit Bhave, Paul Fennell, Niall Mac Dowell, Nilay Shah and Richard H.S. Taylor 5.1 Introduction 94 5.2 Case Study Analysis 101 Acknowledgements 113 References 113 Part II BECCS System Assessments 115 6 Life Cycle Assessment 117 Temitope Falano and Patricia Thornley 6.1 Introduction 117 6.2 Rationale for Supply
Chain Life
Cycle Assessment 117 6.3 Variability in Life
Cycle Assessment of Bioenergy Systems 120 6.3.1 Variability Related to Scope of System 120 6.3.1.1 Land
Use Emissions 120 6.3.1.2 Land
Use Change Emissions 121 6.3.1.3 Indirect Land
Use Change Emissions 121 6.3.2 Variability Related to Methodology 122 6.3.3 Variability Related to System Definition 122 6.3.4 Variability Related to Assumptions 122 6.4 Published LCAs of BECCS 123 6.5 Sensitivity Analysis of Reported Carbon Savings to Key System Parameters 124 6.5.1 Impact of CO2 Capture Efficiency 124 6.5.2 Variation of Energy Requirement Associated with CO2 Capture 125 6.5.3 Variation of Biomass Yield 125 6.6 Conclusions 125 References 126 7 System Characterisation of Carbon Capture and Storage (CCS) Systems 129 Geoffrey P. Hammond 7.1 Introduction 129 7.1.1 Background 129 7.1.2 The Issues Considered 131 7.2 CCS Process Characterisation, Innovation and Deployment 131 7.2.1 CCS Process Characterisation 131 7.2.2 CCS Innovation and Deployment 133 7.3 CCS Options for the United Kingdom 135 7.4 The Sustainability Assessment Context 136 7.4.1.1 The Environmental Pillar 136 7.4.1.2 The Economic Pillar 137 7.4.1.3 The Social Pillar 137 7.5 CCS Performance Metrics 138 7.5.1 Energy Analysis and Metrics 138 7.5.2 Carbon Accounting and Related Parameters 139 7.5.3 Economic Appraisal and Indicators 140 7.6 CCS System Characterisation 141 7.6.1 CO2 Capture 141 7.6.1.1 Technical Exemplars 141 7.6.1.2 Energy Metrics 141 7.6.1.3 Carbon Emissions 142 7.6.1.4 Economic Indicators 145 7.6.2 CO2 Transport and Clustering 147 7.6.3 CO2 Storage 149 7.6.3.1 Storage Options and Capacities 149 7.6.3.2 Storage Site Risks, Environmental Impacts and Monitoring 150 7.6.3.3 Storage Economics 152 7.6.4 Whole CCS Chain Assessment 153 7.7 Concluding Remarks 156 Acknowledgments 157 References 158 8 The System Value of Deploying Bioenergy with CCS (BECCS) in the United Kingdom 163 Geraldine Newton
Cross and Dennis Gammer 8.1 Background 163 8.1.1 Why BECCS? 163 8.1.2 Critical Knowledge Gaps 168 8.2 Context 168 8.2.1 Bioenergy 168 8.2.2 Bioenergy with CCS 169 8.3 Progressing our Understanding of the Key Uncertainties Associated with BECCS 170 8.3.1 Can a Sufficient Level of BECCS Be Deployed in the United Kingdom to Support Cost-Effective Decarbonisation Pathways for the United Kingdom out to 2050? 170 8.3.2 What are the Right Combinations of Feedstock, Preprocessing, Conversion and Carbon
Capture Technologies to Deploy for Bioenergy Production in the United Kingdom? 174 8.3.2.1 Optimising Feedstock Properties for Future Bioenergy Conversion Technologies 174 8.3.2.2 BECCS Value Chains: What Carbon
Capture Technologies Do we Need to Develop? 175 8.3.3 How can we Deliver the Greatest Emissions Savings from Bioenergy and BECCS in the United Kingdom? 176 8.3.4 How Much CO2 Could Be Stored from UK Sources and How Do we Monitor These Stores Efficiently and Safely? 178 8.3.4.1 Storage Potential 178 8.3.4.2 Managing the Risks of Storage 178 8.4 Conclusion: Completing the BECCS Picture 180 8.4.1 Next Steps 180 References 181 Part III BECCS in the Energy System 185 9 The Climate
Change Mitigation Challenge 187 Sarah Mander, Kevin Anderson, Alice Larkin, Clair Gough and Naomi Vaughan 9.1 Introduction 187 9.2 Cumulative Emissions and Atmospheric CO2 Concentration for 2°C Commitments 188 9.3 The Role of BECCS for Climate
Change Mitigation - A Summary of BECCS within Integrated Assessment Modelling 190 9.3.1 Key Assumptions 194 9.4 Implications and Consequences of BECCS 194 9.5 Conclusions: Can BECCS Deliver what's Expected of it? 199 References 200 10 The Future for Bioenergy Systems: The Role of BECCS? 205 Gabrial Anandarajah, Olivier Dessens and Will McDowall 10.1 Introduction 205 10.2 Methodology 206 10.2.1 TIAM
UCL 206 10.2.2 Representation of Bioenergy and CCS Technologies in TIAM
UCL 208 10.2.3 Scenario Definitions 209 10.3 Results and Discussions 211 10.3.1 2°C Scenarios With and Without BECCS 211 10.3.2 Sensitivity Around Availability of Sustainable Bioenergy 215 10.3.3 1.5 °C Scenarios 221 10.4 Discussion and Conclusions 224 References 225 11 Policy Frameworks and Supply
Chain Accounting 227 Patricia Thornley and Alison Mohr 11.1 Introduction 227 11.2 The Origin and Use of Supply
Chain Analysis in Bioenergy Systems 228 11.2.1 Rationale for Systems
Level Evaluation 228 11.2.2 Importance and Significance of Scope of System 230 11.2.3 Importance and Significance of Breadth of Analysis 231 11.3 Policy Options 232 11.3.1 Objectives of BECCS Policy 232 11.3.2 Review of Existing Policy Frameworks 234 11.3.2.1 International Policy Frameworks 234 11.3.2.1.1 United Nations Framework Convention on Climate Change 234 11.3.2.1.2 EU Emissions Trading System 236 11.3.2.1.3 Renewable Energy Directive and Fuel Quality Directive 236 11.3.2.2 National Policy Frameworks in the United Kingdom 237 11.3.2.2.1 Renewables Obligation and Contracts for Difference 237 11.3.2.2.2 Renewable Transport Fuel Obligation 238 11.4 Ensuring Environmental, Economic and Social Sustainability of a BECCS System 238 11.4.1 Environmental Sustainability and System Scope 238 11.4.2 Economic Sustainability and System Scope 240 11.4.3 Social Sustainability and System Scope 241 11.4.4 Trade
Offs Between Different Sustainability Components 243 11.5 Governance of BECCS Systems 245 11.6 Conclusions: The Future of BECCS Policy and Governance 247 References 248 12 Social and Ethical Dimensions of BECCS 251 Clair Gough, Leslie Mabon and Sarah Mander 12.1 Introduction 251 12.2 Fossil Fuels and BECCS 252 12.3 Alternative Approaches 254 12.3.1 Negative Emissions Approaches and CDR 254 12.3.2 Different Mitigation Approaches 256 12.4 Sustainable Decarbonisation 257 12.5 Societal Responses 258 12.6 Justice 262 12.6.1 Distributional Justice 262 12.6.2 Procedural Justice 263 12.6.3 Financial Justice 265 12.6.4 Intergenerational Justice 267 12.6.5 Summary 268 12.7 Summary 269 References 270 13 Unlocking Negative Emissions 277 Clair Gough, Patricia Thornley, Sarah Mander, Naomi Vaughan and Amanda LeäLangton 13.1 Introduction 277 13.2 Summary of Chapters 277 13.3 Unlocking Negative Emissions: System
Level Challenges 282 13.3.1 Terminology, Scale and Quantification 282 13.3.2 Non
Technological Challenges 284 13.3.3 Technical Challenges 287 13.4 Can Negative Emissions be Unlocked? 287 13.4.1 Do we Need This Technology? 288 13.4.2 Can it Work? 288 13.4.3 Does the Focus on BECCS Distract From the Imperative to Radically Reduce Demand and Transform the Global Energy System? 288 13.4.4 How Can BECCS Unlock Negative Emissions? 289 13.5 Summing Up 290 References 290 Index 291