181,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
91 °P sammeln
  • Broschiertes Buch

Modern Flexible Multi-Body Dynamics Modeling Methodology for Flapping Wing Vehicles presents research on the implementation of a flexible multi-body dynamic representation of a flapping wing ornithopter that considers aero-elasticity. This effort brings advances in the understanding of flapping wing flight physics and dynamics that ultimately leads to an improvement in the performance of such flight vehicles, thus reaching their high performance potential. In using this model, it is necessary to reduce body accelerations and forces of an ornithopter vehicle, as well as to improve the…mehr

Produktbeschreibung
Modern Flexible Multi-Body Dynamics Modeling Methodology for Flapping Wing Vehicles presents research on the implementation of a flexible multi-body dynamic representation of a flapping wing ornithopter that considers aero-elasticity. This effort brings advances in the understanding of flapping wing flight physics and dynamics that ultimately leads to an improvement in the performance of such flight vehicles, thus reaching their high performance potential. In using this model, it is necessary to reduce body accelerations and forces of an ornithopter vehicle, as well as to improve the aerodynamic performance and enhance flight kinematics and forces which are the design optimization objectives.

This book is a useful reference for postgraduates in mechanical engineering and related areas, as well as researchers in the field of multibody dynamics.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Cornelia Altenbuchner is currently a Robotics Technologist at the NASA Jet Propulsion Laboratory (JPL) in Pasadena California. Cornelia earned her PhD from the University of Maryland College Park in Aerospace Engineering, during which time she conducted research at the NASA Langley Research Center and the National Institute of Aerospace. She is originally from Austria and her primary contributions are technology development in the areas of flexible multi-body dynamics modeling and simulation, robotic systems, conceptual mission design, as well as dynamics and controls. Prior to joining the NASA Jet Propulsion Laboratory in July 2016 she worked at the NASA Langley Research Center, where her primary projects involved lightweight Robotic Arms and associated systems, parts of which won the NASA Tech Briefs Invention of the year in 2015. Her work there also included the Asteroid Redirect Mission (ARM), Modular Robotic In-Space Assembly and Bio-inspired autonomous flapping wing UAV's. Her research has been featured by National Geographic and the British Broadcasting Company (BBC). At NASA JPL, she works on robotic systems, which includes dynamic, autonomy and conceptual aspects required to support missions to Europa and Mars 2020. She is a member of the American Institute of Aeronautics and Astronautics (AIAA) Space Robotics and Automation Technical Committee and is an education and outreach enthusiast.
Rezensionen
"This book presents rigorous techniques for modelling the multi-body dynamics problem in a flapping-wing vehicle as well as flexibility in the surfaces. A modern energy-based Lagrangian approach is used to derive the equations of motion. The formulation is suitable for extensions into the areas of stability analysis and control design." --The Aeronautical Journal

"This is a useful test for academics, students and hobbyists interested in studying and building flapping-wing vehicles. Though the aerodynamic models employed here are quite basic, the dynamical model is general enough that more complex aerodynamic models can easily be substituted. This could pave the way to a better understanding of the flow physics and active/passive flow control mechanisms in biological flight." --The Aeronautical Journal