Christian M. Rojas
Molecular Rearrangements in Organic Synthesis (eBook, ePUB)
171,99 €
171,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
171,99 €
Als Download kaufen
171,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
171,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Christian M. Rojas
Molecular Rearrangements in Organic Synthesis (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Designed for practitioners of organic synthesis, this book helps chemists understand and take advantage of rearrangement reactions to enhance the synthesis of useful chemical compounds. * Provides ready access to the genesis, mechanisms, and synthetic utility of rearrangement reactions * Emphasizes strategic synthetic planning and implementation * Covers 20 different rearrangement reactions * Includes applications for synthesizing compounds useful as natural products, medicinal compounds, functional materials, and physical organic chemistry
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 50.75MB
Andere Kunden interessierten sich auch für
- Oleg G. KulinkovichCyclopropanes in Organic Synthesis (eBook, ePUB)153,99 €
- Philip L. FuchsEssential Reagents for Organic Synthesis (eBook, ePUB)89,99 €
- Catalytic Methods in Asymmetric Synthesis (eBook, ePUB)150,99 €
- Robert A. StocklandPractical Functional Group Synthesis (eBook, ePUB)109,99 €
- Peter G. M. WutsGreene's Protective Groups in Organic Synthesis (eBook, ePUB)92,99 €
- Sosale ChandrasekharRearrangements with Migration to Electrophilic Heteroatomic Centers (eBook, ePUB)147,95 €
- Jie Jack LiName Reactions in Heterocyclic Chemistry II (eBook, ePUB)152,99 €
-
-
-
Designed for practitioners of organic synthesis, this book helps chemists understand and take advantage of rearrangement reactions to enhance the synthesis of useful chemical compounds. * Provides ready access to the genesis, mechanisms, and synthetic utility of rearrangement reactions * Emphasizes strategic synthetic planning and implementation * Covers 20 different rearrangement reactions * Includes applications for synthesizing compounds useful as natural products, medicinal compounds, functional materials, and physical organic chemistry
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 776
- Erscheinungstermin: 1. Oktober 2015
- Englisch
- ISBN-13: 9781118939895
- Artikelnr.: 43982213
- Verlag: John Wiley & Sons
- Seitenzahl: 776
- Erscheinungstermin: 1. Oktober 2015
- Englisch
- ISBN-13: 9781118939895
- Artikelnr.: 43982213
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Christian M. Rojas, PhD, is Professor of Chemistry at Barnard College. He obtained his Ph.D. at Indiana University in 1995 and did postdoctoral studies at the Massachusetts Institute of Technology and then at The Scripps Research Institute. Professor Rojas began his independent career at Barnard College in 1997. His research explores the use of acyl nitrenes for the synthesis of amino sugars.
LIST OF CONTRIBUTORS xvii PREFACE xxi PART 1 1,2-MIGRATIONS 1 1 Pinacol and Semipinacol Rearrangements in Total Synthesis 3 1.1 Introduction 3 1.2 Pinacol Reaction 4 1.3 Semipinacol Rearrangement 15 1.4 Conclusion 30 References 32 2 Baeyer-Villiger (BV) Oxidation/Rearrangement in Organic Synthesis 35 2.1 Introduction 35 2.2 Mechanism 35 2.3 Synthetic Applications 37 2.4 Summary and Outlook 55 References 55 3 The Wolff Rearrangement: Tactics, Strategies and Recent Applications in Organic Synthesis 59 3.1 Introduction 59 3.2 Tactics and Strategies via the Wolff Rearrangement 60 3.3 Mechanistic Features and Selectivity Issues of the Wolff Rearrangement 63 3.4 Preparation of
-Diazocarbonyl Compounds 64 3.5 Recent Synthetic Applications of the Wolff Rearrangement 67 3.6 Conclusion and Outlook 80 References 81 4 Alkyl and Acyl Azide Rearrangements 85 4.1 Introduction 85 4.2 Alkyl Azide Rearrangements 86 4.3 Acyl Azide Rearrangements 98 4.4 Hofmann Rearrangement 102 4.5 Lossen Rearrangement 104 4.6 Conclusion 107 References 108 5 Beckmann Rearrangements and Fragmentations in Organic Synthesis 111 5.1 Introduction 111 5.2 Strategic Planning: A Historical Perspective 118 5.3 Recent Applications Toward the Synthesis of Natural Products 121 5.4 Access to Diverse Scaffolds via the Beckmann Reaction 129 5.4.1 Diterpene Hydrocarbons 129 5.5 Formation of Heterocyclic Scaffolds 136 5.6 Synthesis of Functional Groups 140 5.7 Summary and Outlook 144 References 145 6 Brook Rearrangement 151 6.1 Introduction 151 6.2 Mechanism 152 6.3 Methods for Generation of
-Silyl Alkoxides 153 6.4 Synthetic Reactions Using Brook Rearrangements in the Reactions of Acylsilanes with Nucleophiles 154 6.5 Synthetic Reactions Using Brook Rearrangements Triggered by Deprotonation of
-Silyl Alcohols 166 6.6 Synthetic Reactions Using Brook Rearrangements Triggered by Addition of Silylmetallic Reagents 169 6.7 Synthetic Reactions Using Brook Rearrangements in ß-Silyl Alkoxides Generated via Regioselective ß-Ring-Opening of
, ß-Epoxysilanes by a Nucleophile 172 6.8 Synthetic Reactions Using Brook Rearrangements in
-Silyl Alkoxides Generated by a Base-Induced Ring-Opening of alpha;, ß-Epoxysilanes 173 6.9 Conclusion 176 References 178 PART II 1,2-MIGRATIONS VIA THREE-MEMBERED RINGS 183 7 The Quasi-Favorskii Rearrangement 185 7.1 Introduction 185 7.2 Retrons of the Quasi-Favorskii Rearrangement 191 7.3 Mechanistic Considerations in the Quasi-Favorskii Rearrangement 192 7.4 The Preparation of Substrates for the Quasi-Favorskii Rearrangement 193 7.5 Applications of the Quasi-Favorskii Rearrangement in Synthesis 199 7.6 Conclusions and Prospects 220 Acknowledgments 222 References 222 8 The Ramberg-Bäcklund Reaction 227 8.1 Introduction 227 8.2 Methods to Synthesize Sulfones as RBR Precursors 229 8.3 Variations of the RBR 231 8.4 Mechanistic Evaluation of the RBR 233 8.5 Strategic Considerations Relevant to the Use of the RBR in Synthesis 234 8.6 Utility, Scope, and Limitations of the RBR 236 8.7 Recent Applications of the RBR in the Synthesis of Complex Target Structures 246 8.7.1 Fawcettidine 246 8.8 Concluding Remarks 254 Acknowledgments 256 References 256 9 Applications of Di-
-Methane and Related Rearrangement Reactions in Chemical Synthesis 261 9.1 Introduction: The Basic Process and its Variants 261 9.2 Mechanistic Features and Competing Reactions 265 9.3 Structural Requirements of Substrates and Matters of Regio- and Stereochemistry 271 9.4 Synthetic Routes to Substrates and Applications in Synthesis 277 9.5 Outlook 284 References 285 PARTIII 1,3-TRANSPOSITIONS 289 10 Payne Rearrangement 291 10.1 Background on the Payne Rearrangement 291 10.2 Synthetic Applications of 2,3-Epoxy Alcohols 295 10.3 Utilization of the Payne Rearrangement for the Preparation of Fluorine-Containing Compounds 307 10.4 Conclusion 317 References 318 11 Vinylcyclopropane-Cyclopentene Rearrangement 323 11.1 Introduction 323 11.2 Thermal VCP-CP Rearrangement 324 11.3 Acid-Mediated VCP-CP Rearrangement 328 11.4 Mechanisms 330 11.5 Heteroatom-Containing Analogues of the VCP-CP Rearrangement 334 11.6 Applications in Synthesis 336 11.7 Photochemical VCP-CP Rearrangement 340 11.8 Metal-Catalyzed VCP-CP Rearrangement 346 11.9 Heteroatom Variants of the Metal-Catalyzed VCP-CP Rearrangement 354 11.10 Summary and Outlook 359 References 360 12 Ferrier Carbocyclization Reaction 363 12.1 Introduction 363 12.2 General Discussion and Mechanistic Features 365 12.3 Synthetic Strategies Based on the Ferrier Carbocyclization Reaction 373 12.4 Methodologies for Assembling the Ferrier Carbocyclization Reaction Substrates 377 12.5 Applications of the Ferrier Carbocyclization Reaction in Natural Product Synthesis 380 12.6 Conclusion 397 References 398 PARTIV [3,3]- AND [2,3]-SIGMATROPIC REARRANGEMENTS 401 13 The Claisen Rearrangement 403 13.1 Introduction 403 13.2 Strategic Planning for the Claisen Rearrangement Reaction 407 13.3 Mechanistic Features of the Claisen Rearrangement Reaction 409 13.4 Methodologies for Synthesis of Claisen Rearrangement Substrates 417 13.5 Applications of the Claisen Rearrangement Reaction in Target-Oriented Synthesis 421 13.6 Conclusions 426 References 427 14 [3,3]-Sigmatropic Rearrangements with Heteroatom-Heteroatom Bonds 431 14.1 Introduction 431 14.2 [3,3]-Sigmatropic Rearrangements of N-O Bonds 434 14.3 [3,3]-Sigmatropic Rearrangements of N-N Bonds 445 14.4 [3,3]-Rearrangements of N-N Bond Fragments that Eliminate N2 451 14.5 Summary 454 References 455 15 [2,3]-Rearrangements of Ammonium Zwitterions 459 15.1 Introduction 459 15.2 [2,3]-Meisenheimer Rearrangement of Amine N-Oxides 460 15.3 [2,3]-Stevens Rearrangement of Ammonium Ylides 479 15.4 Conclusion and Outlook 492 References 493 16 Oxonium Ylide Rearrangements in Synthesis 497 16.1 Introduction 497 16.2 Applications in Synthesis: Oxonium Ylide [2,3]-Sigmatropic Rearrangements 507 16.3 Applications in Synthesis: Oxonium Ylide [1,2]-Stevens Rearrangements 528 16.4 Concluding Remarks 535 References 536 17 The [2,3]-Wittig Rearrangement 539 17.1 Introduction 539 17.2 [2,3]-Wittig Rearrangement of Allyl Propargyl Ethers 541 17.3 Factors Determining [2,3]-Wittig Versus [1,2]-Wittig Rearrangement 544 17.4 Acyclic [2,3]-Wittig Rearrangement of Propargyl-Allyl Ethers 547 17.5 [2,3]-Wittig-Still Rearrangement 552 17.6 Asymmetric [2,3]-Wittig Rearrangement 554 17.7 Aza-[2,3]-Wittig Rearrangement 555 17.8 Other Wittig Rearrangements and Miscellaneous 560 17.9 Conclusion 565 References 565 18 The Mislow-Evans Rearrangement 569 18.1 Introduction 569 Part 1 Mechanistic Aspects and the [2,3] Nature of the Rearrangement 571 18.2 Configurational Lability of Allylic Sulfoxides 571 18.3 Deuterium Labeling to Track [2,3] Pathway 573 18.4 Transition State Features 573 18.5 Equilibrium Between Sulfoxide and Sulfenate 576 18.6 Chirality Transfer 579 Part 2 Synthetic Considerations and Applications 580 18.7 Alkene Stereoselectivity 580 18.8 Diastereoface Selectivity in the Rearrangement 583 18.9 Epimerizations via Mislow-Evans Rearrangement Sequences 591 18.10 Vinyl Anion Synthons Accessible via Mislow-Evans Rearrangement 593 18.11 Sequential Processes Incorporating the Mislow-Evans Rearrangement 598 18.12 Heteroatom [2,3]-Rearrangement Variants 614 18.13 [2,3]-Rearrangements of Propargyl and Allenyl Sulfenates and Sulfoxides 620 18.14 Conclusion 622 References 622 PART V IPSO REARRANGEMENTS 627 19 Smiles Rearrangements 629 19.1 Introduction 629 19.2 Scope and Mechanistic Features 632 19.3 Application of Smiles Rearrangements 635 19.4 Conclusion 657 References 658 20 Pummerer-Type Reactions as Powerful Tools in Organic Synthesis 661 20.1 Introduction 661 20.2 Classical Pummerer Reaction 662 20.3 Vinylogous Pummerer Reaction 674 20.4 Interrupted and Additive Pummerer Reactions 680 20.5 Connective Pummerer Reaction 687 20.6 Pummerer Rearrangement in Multiple-Reaction Processes 693 20.7 Other Pummerer Rearrangements 696 20.8 Summary and Outlook 700 References 700 INDEX 703
-Diazocarbonyl Compounds 64 3.5 Recent Synthetic Applications of the Wolff Rearrangement 67 3.6 Conclusion and Outlook 80 References 81 4 Alkyl and Acyl Azide Rearrangements 85 4.1 Introduction 85 4.2 Alkyl Azide Rearrangements 86 4.3 Acyl Azide Rearrangements 98 4.4 Hofmann Rearrangement 102 4.5 Lossen Rearrangement 104 4.6 Conclusion 107 References 108 5 Beckmann Rearrangements and Fragmentations in Organic Synthesis 111 5.1 Introduction 111 5.2 Strategic Planning: A Historical Perspective 118 5.3 Recent Applications Toward the Synthesis of Natural Products 121 5.4 Access to Diverse Scaffolds via the Beckmann Reaction 129 5.4.1 Diterpene Hydrocarbons 129 5.5 Formation of Heterocyclic Scaffolds 136 5.6 Synthesis of Functional Groups 140 5.7 Summary and Outlook 144 References 145 6 Brook Rearrangement 151 6.1 Introduction 151 6.2 Mechanism 152 6.3 Methods for Generation of
-Silyl Alkoxides 153 6.4 Synthetic Reactions Using Brook Rearrangements in the Reactions of Acylsilanes with Nucleophiles 154 6.5 Synthetic Reactions Using Brook Rearrangements Triggered by Deprotonation of
-Silyl Alcohols 166 6.6 Synthetic Reactions Using Brook Rearrangements Triggered by Addition of Silylmetallic Reagents 169 6.7 Synthetic Reactions Using Brook Rearrangements in ß-Silyl Alkoxides Generated via Regioselective ß-Ring-Opening of
, ß-Epoxysilanes by a Nucleophile 172 6.8 Synthetic Reactions Using Brook Rearrangements in
-Silyl Alkoxides Generated by a Base-Induced Ring-Opening of alpha;, ß-Epoxysilanes 173 6.9 Conclusion 176 References 178 PART II 1,2-MIGRATIONS VIA THREE-MEMBERED RINGS 183 7 The Quasi-Favorskii Rearrangement 185 7.1 Introduction 185 7.2 Retrons of the Quasi-Favorskii Rearrangement 191 7.3 Mechanistic Considerations in the Quasi-Favorskii Rearrangement 192 7.4 The Preparation of Substrates for the Quasi-Favorskii Rearrangement 193 7.5 Applications of the Quasi-Favorskii Rearrangement in Synthesis 199 7.6 Conclusions and Prospects 220 Acknowledgments 222 References 222 8 The Ramberg-Bäcklund Reaction 227 8.1 Introduction 227 8.2 Methods to Synthesize Sulfones as RBR Precursors 229 8.3 Variations of the RBR 231 8.4 Mechanistic Evaluation of the RBR 233 8.5 Strategic Considerations Relevant to the Use of the RBR in Synthesis 234 8.6 Utility, Scope, and Limitations of the RBR 236 8.7 Recent Applications of the RBR in the Synthesis of Complex Target Structures 246 8.7.1 Fawcettidine 246 8.8 Concluding Remarks 254 Acknowledgments 256 References 256 9 Applications of Di-
-Methane and Related Rearrangement Reactions in Chemical Synthesis 261 9.1 Introduction: The Basic Process and its Variants 261 9.2 Mechanistic Features and Competing Reactions 265 9.3 Structural Requirements of Substrates and Matters of Regio- and Stereochemistry 271 9.4 Synthetic Routes to Substrates and Applications in Synthesis 277 9.5 Outlook 284 References 285 PARTIII 1,3-TRANSPOSITIONS 289 10 Payne Rearrangement 291 10.1 Background on the Payne Rearrangement 291 10.2 Synthetic Applications of 2,3-Epoxy Alcohols 295 10.3 Utilization of the Payne Rearrangement for the Preparation of Fluorine-Containing Compounds 307 10.4 Conclusion 317 References 318 11 Vinylcyclopropane-Cyclopentene Rearrangement 323 11.1 Introduction 323 11.2 Thermal VCP-CP Rearrangement 324 11.3 Acid-Mediated VCP-CP Rearrangement 328 11.4 Mechanisms 330 11.5 Heteroatom-Containing Analogues of the VCP-CP Rearrangement 334 11.6 Applications in Synthesis 336 11.7 Photochemical VCP-CP Rearrangement 340 11.8 Metal-Catalyzed VCP-CP Rearrangement 346 11.9 Heteroatom Variants of the Metal-Catalyzed VCP-CP Rearrangement 354 11.10 Summary and Outlook 359 References 360 12 Ferrier Carbocyclization Reaction 363 12.1 Introduction 363 12.2 General Discussion and Mechanistic Features 365 12.3 Synthetic Strategies Based on the Ferrier Carbocyclization Reaction 373 12.4 Methodologies for Assembling the Ferrier Carbocyclization Reaction Substrates 377 12.5 Applications of the Ferrier Carbocyclization Reaction in Natural Product Synthesis 380 12.6 Conclusion 397 References 398 PARTIV [3,3]- AND [2,3]-SIGMATROPIC REARRANGEMENTS 401 13 The Claisen Rearrangement 403 13.1 Introduction 403 13.2 Strategic Planning for the Claisen Rearrangement Reaction 407 13.3 Mechanistic Features of the Claisen Rearrangement Reaction 409 13.4 Methodologies for Synthesis of Claisen Rearrangement Substrates 417 13.5 Applications of the Claisen Rearrangement Reaction in Target-Oriented Synthesis 421 13.6 Conclusions 426 References 427 14 [3,3]-Sigmatropic Rearrangements with Heteroatom-Heteroatom Bonds 431 14.1 Introduction 431 14.2 [3,3]-Sigmatropic Rearrangements of N-O Bonds 434 14.3 [3,3]-Sigmatropic Rearrangements of N-N Bonds 445 14.4 [3,3]-Rearrangements of N-N Bond Fragments that Eliminate N2 451 14.5 Summary 454 References 455 15 [2,3]-Rearrangements of Ammonium Zwitterions 459 15.1 Introduction 459 15.2 [2,3]-Meisenheimer Rearrangement of Amine N-Oxides 460 15.3 [2,3]-Stevens Rearrangement of Ammonium Ylides 479 15.4 Conclusion and Outlook 492 References 493 16 Oxonium Ylide Rearrangements in Synthesis 497 16.1 Introduction 497 16.2 Applications in Synthesis: Oxonium Ylide [2,3]-Sigmatropic Rearrangements 507 16.3 Applications in Synthesis: Oxonium Ylide [1,2]-Stevens Rearrangements 528 16.4 Concluding Remarks 535 References 536 17 The [2,3]-Wittig Rearrangement 539 17.1 Introduction 539 17.2 [2,3]-Wittig Rearrangement of Allyl Propargyl Ethers 541 17.3 Factors Determining [2,3]-Wittig Versus [1,2]-Wittig Rearrangement 544 17.4 Acyclic [2,3]-Wittig Rearrangement of Propargyl-Allyl Ethers 547 17.5 [2,3]-Wittig-Still Rearrangement 552 17.6 Asymmetric [2,3]-Wittig Rearrangement 554 17.7 Aza-[2,3]-Wittig Rearrangement 555 17.8 Other Wittig Rearrangements and Miscellaneous 560 17.9 Conclusion 565 References 565 18 The Mislow-Evans Rearrangement 569 18.1 Introduction 569 Part 1 Mechanistic Aspects and the [2,3] Nature of the Rearrangement 571 18.2 Configurational Lability of Allylic Sulfoxides 571 18.3 Deuterium Labeling to Track [2,3] Pathway 573 18.4 Transition State Features 573 18.5 Equilibrium Between Sulfoxide and Sulfenate 576 18.6 Chirality Transfer 579 Part 2 Synthetic Considerations and Applications 580 18.7 Alkene Stereoselectivity 580 18.8 Diastereoface Selectivity in the Rearrangement 583 18.9 Epimerizations via Mislow-Evans Rearrangement Sequences 591 18.10 Vinyl Anion Synthons Accessible via Mislow-Evans Rearrangement 593 18.11 Sequential Processes Incorporating the Mislow-Evans Rearrangement 598 18.12 Heteroatom [2,3]-Rearrangement Variants 614 18.13 [2,3]-Rearrangements of Propargyl and Allenyl Sulfenates and Sulfoxides 620 18.14 Conclusion 622 References 622 PART V IPSO REARRANGEMENTS 627 19 Smiles Rearrangements 629 19.1 Introduction 629 19.2 Scope and Mechanistic Features 632 19.3 Application of Smiles Rearrangements 635 19.4 Conclusion 657 References 658 20 Pummerer-Type Reactions as Powerful Tools in Organic Synthesis 661 20.1 Introduction 661 20.2 Classical Pummerer Reaction 662 20.3 Vinylogous Pummerer Reaction 674 20.4 Interrupted and Additive Pummerer Reactions 680 20.5 Connective Pummerer Reaction 687 20.6 Pummerer Rearrangement in Multiple-Reaction Processes 693 20.7 Other Pummerer Rearrangements 696 20.8 Summary and Outlook 700 References 700 INDEX 703
LIST OF CONTRIBUTORS xvii PREFACE xxi PART 1 1,2-MIGRATIONS 1 1 Pinacol and Semipinacol Rearrangements in Total Synthesis 3 1.1 Introduction 3 1.2 Pinacol Reaction 4 1.3 Semipinacol Rearrangement 15 1.4 Conclusion 30 References 32 2 Baeyer-Villiger (BV) Oxidation/Rearrangement in Organic Synthesis 35 2.1 Introduction 35 2.2 Mechanism 35 2.3 Synthetic Applications 37 2.4 Summary and Outlook 55 References 55 3 The Wolff Rearrangement: Tactics, Strategies and Recent Applications in Organic Synthesis 59 3.1 Introduction 59 3.2 Tactics and Strategies via the Wolff Rearrangement 60 3.3 Mechanistic Features and Selectivity Issues of the Wolff Rearrangement 63 3.4 Preparation of
-Diazocarbonyl Compounds 64 3.5 Recent Synthetic Applications of the Wolff Rearrangement 67 3.6 Conclusion and Outlook 80 References 81 4 Alkyl and Acyl Azide Rearrangements 85 4.1 Introduction 85 4.2 Alkyl Azide Rearrangements 86 4.3 Acyl Azide Rearrangements 98 4.4 Hofmann Rearrangement 102 4.5 Lossen Rearrangement 104 4.6 Conclusion 107 References 108 5 Beckmann Rearrangements and Fragmentations in Organic Synthesis 111 5.1 Introduction 111 5.2 Strategic Planning: A Historical Perspective 118 5.3 Recent Applications Toward the Synthesis of Natural Products 121 5.4 Access to Diverse Scaffolds via the Beckmann Reaction 129 5.4.1 Diterpene Hydrocarbons 129 5.5 Formation of Heterocyclic Scaffolds 136 5.6 Synthesis of Functional Groups 140 5.7 Summary and Outlook 144 References 145 6 Brook Rearrangement 151 6.1 Introduction 151 6.2 Mechanism 152 6.3 Methods for Generation of
-Silyl Alkoxides 153 6.4 Synthetic Reactions Using Brook Rearrangements in the Reactions of Acylsilanes with Nucleophiles 154 6.5 Synthetic Reactions Using Brook Rearrangements Triggered by Deprotonation of
-Silyl Alcohols 166 6.6 Synthetic Reactions Using Brook Rearrangements Triggered by Addition of Silylmetallic Reagents 169 6.7 Synthetic Reactions Using Brook Rearrangements in ß-Silyl Alkoxides Generated via Regioselective ß-Ring-Opening of
, ß-Epoxysilanes by a Nucleophile 172 6.8 Synthetic Reactions Using Brook Rearrangements in
-Silyl Alkoxides Generated by a Base-Induced Ring-Opening of alpha;, ß-Epoxysilanes 173 6.9 Conclusion 176 References 178 PART II 1,2-MIGRATIONS VIA THREE-MEMBERED RINGS 183 7 The Quasi-Favorskii Rearrangement 185 7.1 Introduction 185 7.2 Retrons of the Quasi-Favorskii Rearrangement 191 7.3 Mechanistic Considerations in the Quasi-Favorskii Rearrangement 192 7.4 The Preparation of Substrates for the Quasi-Favorskii Rearrangement 193 7.5 Applications of the Quasi-Favorskii Rearrangement in Synthesis 199 7.6 Conclusions and Prospects 220 Acknowledgments 222 References 222 8 The Ramberg-Bäcklund Reaction 227 8.1 Introduction 227 8.2 Methods to Synthesize Sulfones as RBR Precursors 229 8.3 Variations of the RBR 231 8.4 Mechanistic Evaluation of the RBR 233 8.5 Strategic Considerations Relevant to the Use of the RBR in Synthesis 234 8.6 Utility, Scope, and Limitations of the RBR 236 8.7 Recent Applications of the RBR in the Synthesis of Complex Target Structures 246 8.7.1 Fawcettidine 246 8.8 Concluding Remarks 254 Acknowledgments 256 References 256 9 Applications of Di-
-Methane and Related Rearrangement Reactions in Chemical Synthesis 261 9.1 Introduction: The Basic Process and its Variants 261 9.2 Mechanistic Features and Competing Reactions 265 9.3 Structural Requirements of Substrates and Matters of Regio- and Stereochemistry 271 9.4 Synthetic Routes to Substrates and Applications in Synthesis 277 9.5 Outlook 284 References 285 PARTIII 1,3-TRANSPOSITIONS 289 10 Payne Rearrangement 291 10.1 Background on the Payne Rearrangement 291 10.2 Synthetic Applications of 2,3-Epoxy Alcohols 295 10.3 Utilization of the Payne Rearrangement for the Preparation of Fluorine-Containing Compounds 307 10.4 Conclusion 317 References 318 11 Vinylcyclopropane-Cyclopentene Rearrangement 323 11.1 Introduction 323 11.2 Thermal VCP-CP Rearrangement 324 11.3 Acid-Mediated VCP-CP Rearrangement 328 11.4 Mechanisms 330 11.5 Heteroatom-Containing Analogues of the VCP-CP Rearrangement 334 11.6 Applications in Synthesis 336 11.7 Photochemical VCP-CP Rearrangement 340 11.8 Metal-Catalyzed VCP-CP Rearrangement 346 11.9 Heteroatom Variants of the Metal-Catalyzed VCP-CP Rearrangement 354 11.10 Summary and Outlook 359 References 360 12 Ferrier Carbocyclization Reaction 363 12.1 Introduction 363 12.2 General Discussion and Mechanistic Features 365 12.3 Synthetic Strategies Based on the Ferrier Carbocyclization Reaction 373 12.4 Methodologies for Assembling the Ferrier Carbocyclization Reaction Substrates 377 12.5 Applications of the Ferrier Carbocyclization Reaction in Natural Product Synthesis 380 12.6 Conclusion 397 References 398 PARTIV [3,3]- AND [2,3]-SIGMATROPIC REARRANGEMENTS 401 13 The Claisen Rearrangement 403 13.1 Introduction 403 13.2 Strategic Planning for the Claisen Rearrangement Reaction 407 13.3 Mechanistic Features of the Claisen Rearrangement Reaction 409 13.4 Methodologies for Synthesis of Claisen Rearrangement Substrates 417 13.5 Applications of the Claisen Rearrangement Reaction in Target-Oriented Synthesis 421 13.6 Conclusions 426 References 427 14 [3,3]-Sigmatropic Rearrangements with Heteroatom-Heteroatom Bonds 431 14.1 Introduction 431 14.2 [3,3]-Sigmatropic Rearrangements of N-O Bonds 434 14.3 [3,3]-Sigmatropic Rearrangements of N-N Bonds 445 14.4 [3,3]-Rearrangements of N-N Bond Fragments that Eliminate N2 451 14.5 Summary 454 References 455 15 [2,3]-Rearrangements of Ammonium Zwitterions 459 15.1 Introduction 459 15.2 [2,3]-Meisenheimer Rearrangement of Amine N-Oxides 460 15.3 [2,3]-Stevens Rearrangement of Ammonium Ylides 479 15.4 Conclusion and Outlook 492 References 493 16 Oxonium Ylide Rearrangements in Synthesis 497 16.1 Introduction 497 16.2 Applications in Synthesis: Oxonium Ylide [2,3]-Sigmatropic Rearrangements 507 16.3 Applications in Synthesis: Oxonium Ylide [1,2]-Stevens Rearrangements 528 16.4 Concluding Remarks 535 References 536 17 The [2,3]-Wittig Rearrangement 539 17.1 Introduction 539 17.2 [2,3]-Wittig Rearrangement of Allyl Propargyl Ethers 541 17.3 Factors Determining [2,3]-Wittig Versus [1,2]-Wittig Rearrangement 544 17.4 Acyclic [2,3]-Wittig Rearrangement of Propargyl-Allyl Ethers 547 17.5 [2,3]-Wittig-Still Rearrangement 552 17.6 Asymmetric [2,3]-Wittig Rearrangement 554 17.7 Aza-[2,3]-Wittig Rearrangement 555 17.8 Other Wittig Rearrangements and Miscellaneous 560 17.9 Conclusion 565 References 565 18 The Mislow-Evans Rearrangement 569 18.1 Introduction 569 Part 1 Mechanistic Aspects and the [2,3] Nature of the Rearrangement 571 18.2 Configurational Lability of Allylic Sulfoxides 571 18.3 Deuterium Labeling to Track [2,3] Pathway 573 18.4 Transition State Features 573 18.5 Equilibrium Between Sulfoxide and Sulfenate 576 18.6 Chirality Transfer 579 Part 2 Synthetic Considerations and Applications 580 18.7 Alkene Stereoselectivity 580 18.8 Diastereoface Selectivity in the Rearrangement 583 18.9 Epimerizations via Mislow-Evans Rearrangement Sequences 591 18.10 Vinyl Anion Synthons Accessible via Mislow-Evans Rearrangement 593 18.11 Sequential Processes Incorporating the Mislow-Evans Rearrangement 598 18.12 Heteroatom [2,3]-Rearrangement Variants 614 18.13 [2,3]-Rearrangements of Propargyl and Allenyl Sulfenates and Sulfoxides 620 18.14 Conclusion 622 References 622 PART V IPSO REARRANGEMENTS 627 19 Smiles Rearrangements 629 19.1 Introduction 629 19.2 Scope and Mechanistic Features 632 19.3 Application of Smiles Rearrangements 635 19.4 Conclusion 657 References 658 20 Pummerer-Type Reactions as Powerful Tools in Organic Synthesis 661 20.1 Introduction 661 20.2 Classical Pummerer Reaction 662 20.3 Vinylogous Pummerer Reaction 674 20.4 Interrupted and Additive Pummerer Reactions 680 20.5 Connective Pummerer Reaction 687 20.6 Pummerer Rearrangement in Multiple-Reaction Processes 693 20.7 Other Pummerer Rearrangements 696 20.8 Summary and Outlook 700 References 700 INDEX 703
-Diazocarbonyl Compounds 64 3.5 Recent Synthetic Applications of the Wolff Rearrangement 67 3.6 Conclusion and Outlook 80 References 81 4 Alkyl and Acyl Azide Rearrangements 85 4.1 Introduction 85 4.2 Alkyl Azide Rearrangements 86 4.3 Acyl Azide Rearrangements 98 4.4 Hofmann Rearrangement 102 4.5 Lossen Rearrangement 104 4.6 Conclusion 107 References 108 5 Beckmann Rearrangements and Fragmentations in Organic Synthesis 111 5.1 Introduction 111 5.2 Strategic Planning: A Historical Perspective 118 5.3 Recent Applications Toward the Synthesis of Natural Products 121 5.4 Access to Diverse Scaffolds via the Beckmann Reaction 129 5.4.1 Diterpene Hydrocarbons 129 5.5 Formation of Heterocyclic Scaffolds 136 5.6 Synthesis of Functional Groups 140 5.7 Summary and Outlook 144 References 145 6 Brook Rearrangement 151 6.1 Introduction 151 6.2 Mechanism 152 6.3 Methods for Generation of
-Silyl Alkoxides 153 6.4 Synthetic Reactions Using Brook Rearrangements in the Reactions of Acylsilanes with Nucleophiles 154 6.5 Synthetic Reactions Using Brook Rearrangements Triggered by Deprotonation of
-Silyl Alcohols 166 6.6 Synthetic Reactions Using Brook Rearrangements Triggered by Addition of Silylmetallic Reagents 169 6.7 Synthetic Reactions Using Brook Rearrangements in ß-Silyl Alkoxides Generated via Regioselective ß-Ring-Opening of
, ß-Epoxysilanes by a Nucleophile 172 6.8 Synthetic Reactions Using Brook Rearrangements in
-Silyl Alkoxides Generated by a Base-Induced Ring-Opening of alpha;, ß-Epoxysilanes 173 6.9 Conclusion 176 References 178 PART II 1,2-MIGRATIONS VIA THREE-MEMBERED RINGS 183 7 The Quasi-Favorskii Rearrangement 185 7.1 Introduction 185 7.2 Retrons of the Quasi-Favorskii Rearrangement 191 7.3 Mechanistic Considerations in the Quasi-Favorskii Rearrangement 192 7.4 The Preparation of Substrates for the Quasi-Favorskii Rearrangement 193 7.5 Applications of the Quasi-Favorskii Rearrangement in Synthesis 199 7.6 Conclusions and Prospects 220 Acknowledgments 222 References 222 8 The Ramberg-Bäcklund Reaction 227 8.1 Introduction 227 8.2 Methods to Synthesize Sulfones as RBR Precursors 229 8.3 Variations of the RBR 231 8.4 Mechanistic Evaluation of the RBR 233 8.5 Strategic Considerations Relevant to the Use of the RBR in Synthesis 234 8.6 Utility, Scope, and Limitations of the RBR 236 8.7 Recent Applications of the RBR in the Synthesis of Complex Target Structures 246 8.7.1 Fawcettidine 246 8.8 Concluding Remarks 254 Acknowledgments 256 References 256 9 Applications of Di-
-Methane and Related Rearrangement Reactions in Chemical Synthesis 261 9.1 Introduction: The Basic Process and its Variants 261 9.2 Mechanistic Features and Competing Reactions 265 9.3 Structural Requirements of Substrates and Matters of Regio- and Stereochemistry 271 9.4 Synthetic Routes to Substrates and Applications in Synthesis 277 9.5 Outlook 284 References 285 PARTIII 1,3-TRANSPOSITIONS 289 10 Payne Rearrangement 291 10.1 Background on the Payne Rearrangement 291 10.2 Synthetic Applications of 2,3-Epoxy Alcohols 295 10.3 Utilization of the Payne Rearrangement for the Preparation of Fluorine-Containing Compounds 307 10.4 Conclusion 317 References 318 11 Vinylcyclopropane-Cyclopentene Rearrangement 323 11.1 Introduction 323 11.2 Thermal VCP-CP Rearrangement 324 11.3 Acid-Mediated VCP-CP Rearrangement 328 11.4 Mechanisms 330 11.5 Heteroatom-Containing Analogues of the VCP-CP Rearrangement 334 11.6 Applications in Synthesis 336 11.7 Photochemical VCP-CP Rearrangement 340 11.8 Metal-Catalyzed VCP-CP Rearrangement 346 11.9 Heteroatom Variants of the Metal-Catalyzed VCP-CP Rearrangement 354 11.10 Summary and Outlook 359 References 360 12 Ferrier Carbocyclization Reaction 363 12.1 Introduction 363 12.2 General Discussion and Mechanistic Features 365 12.3 Synthetic Strategies Based on the Ferrier Carbocyclization Reaction 373 12.4 Methodologies for Assembling the Ferrier Carbocyclization Reaction Substrates 377 12.5 Applications of the Ferrier Carbocyclization Reaction in Natural Product Synthesis 380 12.6 Conclusion 397 References 398 PARTIV [3,3]- AND [2,3]-SIGMATROPIC REARRANGEMENTS 401 13 The Claisen Rearrangement 403 13.1 Introduction 403 13.2 Strategic Planning for the Claisen Rearrangement Reaction 407 13.3 Mechanistic Features of the Claisen Rearrangement Reaction 409 13.4 Methodologies for Synthesis of Claisen Rearrangement Substrates 417 13.5 Applications of the Claisen Rearrangement Reaction in Target-Oriented Synthesis 421 13.6 Conclusions 426 References 427 14 [3,3]-Sigmatropic Rearrangements with Heteroatom-Heteroatom Bonds 431 14.1 Introduction 431 14.2 [3,3]-Sigmatropic Rearrangements of N-O Bonds 434 14.3 [3,3]-Sigmatropic Rearrangements of N-N Bonds 445 14.4 [3,3]-Rearrangements of N-N Bond Fragments that Eliminate N2 451 14.5 Summary 454 References 455 15 [2,3]-Rearrangements of Ammonium Zwitterions 459 15.1 Introduction 459 15.2 [2,3]-Meisenheimer Rearrangement of Amine N-Oxides 460 15.3 [2,3]-Stevens Rearrangement of Ammonium Ylides 479 15.4 Conclusion and Outlook 492 References 493 16 Oxonium Ylide Rearrangements in Synthesis 497 16.1 Introduction 497 16.2 Applications in Synthesis: Oxonium Ylide [2,3]-Sigmatropic Rearrangements 507 16.3 Applications in Synthesis: Oxonium Ylide [1,2]-Stevens Rearrangements 528 16.4 Concluding Remarks 535 References 536 17 The [2,3]-Wittig Rearrangement 539 17.1 Introduction 539 17.2 [2,3]-Wittig Rearrangement of Allyl Propargyl Ethers 541 17.3 Factors Determining [2,3]-Wittig Versus [1,2]-Wittig Rearrangement 544 17.4 Acyclic [2,3]-Wittig Rearrangement of Propargyl-Allyl Ethers 547 17.5 [2,3]-Wittig-Still Rearrangement 552 17.6 Asymmetric [2,3]-Wittig Rearrangement 554 17.7 Aza-[2,3]-Wittig Rearrangement 555 17.8 Other Wittig Rearrangements and Miscellaneous 560 17.9 Conclusion 565 References 565 18 The Mislow-Evans Rearrangement 569 18.1 Introduction 569 Part 1 Mechanistic Aspects and the [2,3] Nature of the Rearrangement 571 18.2 Configurational Lability of Allylic Sulfoxides 571 18.3 Deuterium Labeling to Track [2,3] Pathway 573 18.4 Transition State Features 573 18.5 Equilibrium Between Sulfoxide and Sulfenate 576 18.6 Chirality Transfer 579 Part 2 Synthetic Considerations and Applications 580 18.7 Alkene Stereoselectivity 580 18.8 Diastereoface Selectivity in the Rearrangement 583 18.9 Epimerizations via Mislow-Evans Rearrangement Sequences 591 18.10 Vinyl Anion Synthons Accessible via Mislow-Evans Rearrangement 593 18.11 Sequential Processes Incorporating the Mislow-Evans Rearrangement 598 18.12 Heteroatom [2,3]-Rearrangement Variants 614 18.13 [2,3]-Rearrangements of Propargyl and Allenyl Sulfenates and Sulfoxides 620 18.14 Conclusion 622 References 622 PART V IPSO REARRANGEMENTS 627 19 Smiles Rearrangements 629 19.1 Introduction 629 19.2 Scope and Mechanistic Features 632 19.3 Application of Smiles Rearrangements 635 19.4 Conclusion 657 References 658 20 Pummerer-Type Reactions as Powerful Tools in Organic Synthesis 661 20.1 Introduction 661 20.2 Classical Pummerer Reaction 662 20.3 Vinylogous Pummerer Reaction 674 20.4 Interrupted and Additive Pummerer Reactions 680 20.5 Connective Pummerer Reaction 687 20.6 Pummerer Rearrangement in Multiple-Reaction Processes 693 20.7 Other Pummerer Rearrangements 696 20.8 Summary and Outlook 700 References 700 INDEX 703