A. Olevskii
Fourier Series with Respect to General Orthogonal Systems
Übersetzung: Marshall, B.P.; Christoffers, H.J.
A. Olevskii
Fourier Series with Respect to General Orthogonal Systems
Übersetzung: Marshall, B.P.; Christoffers, H.J.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The fundamental problem of the theory of Fourier series consists of the investigation of the connections between the metric properties of the function expanded, the behavior of its Fourier coefficients {cn} with respect to an ortho normal system of functions {
Andere Kunden interessierten sich auch für
- Jean-Pierre KahaneSéries de Fourier absolument convergentes31,00 €
- Ganti P. RaoPiecewise Constant Orthogonal Functions and Their Application to Systems and Control42,99 €
- W. TrebelsMultipliers for (C,alpha)-Bounded Fourier Expansions in Banach Spaces and Approximation Theory21,99 €
- Salma KanwalExtremal Graphs With Respect To Certain Topological Indices39,99 €
- Eduardo Jiménez FernándezSquare Integrable Functions With Respect To A Vector Measure26,99 €
- Susanna DannPaley-Wiener theorems with respect to the spectral parameter39,99 €
- A .P. Pushpalatha PonnupandianStudy of excellence in graphs with respect to various parameters22,99 €
-
-
-
The fundamental problem of the theory of Fourier series consists of the investigation of the connections between the metric properties of the function expanded, the behavior of its Fourier coefficients {cn} with respect to an ortho normal system of functions {
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge .86
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-66058-0
- Softcover reprint of the original 1st ed. 1975
- Seitenzahl: 152
- Erscheinungstermin: 15. November 2011
- Englisch
- Abmessung: 244mm x 170mm x 9mm
- Gewicht: 274g
- ISBN-13: 9783642660580
- ISBN-10: 3642660584
- Artikelnr.: 36122346
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge .86
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-66058-0
- Softcover reprint of the original 1st ed. 1975
- Seitenzahl: 152
- Erscheinungstermin: 15. November 2011
- Englisch
- Abmessung: 244mm x 170mm x 9mm
- Gewicht: 274g
- ISBN-13: 9783642660580
- ISBN-10: 3642660584
- Artikelnr.: 36122346
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Terminology. Preliminary Information.- I. Convergence of Fourier Series in the Classical Sense. Lebesgue Functions of Bounded Systems.-
1. The Fundamental Inequality.-
2. The Logarithmic Growth of the Lebesgue Functions. Divergence of Fourier Series.-
3. Series with Decreasing Coefficients.-
4. Generalizations, Counterexamples, Problems.-
5. The Stability of the Orthogonalization Operator.- II. Convergence Almost Everywhere; Conditions on the Coefficients.-
1. The Class S?.-
2. Garsia's Theorem.-
3. The Coefficients of Convergent Series in Complete Systems.-
4. Extension of a System of Functions to an ONS.- III. Properties of Complete Systems; the Role of the Haar System.-
1. The Basic Construction.-
2. Divergent Fourier Series.- 3. Bases in Function Spaces and Majorants of Fourier Series.-
4. Fourier Coefficients of Continuous Functions.-
5. Some More Results about the Haar System.- IV. Series from L2 and Peculiarities of Fourier Series from the Spaces Lp.-
1. The Matrices Ak.-
2. Lebesgue Functions and Convergence Almost Everywhere.-
3. Convergence of Fourier Series of Functions from Various Classes.-
4. Sums of Fourier Series.-
5. Conditional Bases in Hubert Space.
1. The Fundamental Inequality.-
2. The Logarithmic Growth of the Lebesgue Functions. Divergence of Fourier Series.-
3. Series with Decreasing Coefficients.-
4. Generalizations, Counterexamples, Problems.-
5. The Stability of the Orthogonalization Operator.- II. Convergence Almost Everywhere; Conditions on the Coefficients.-
1. The Class S?.-
2. Garsia's Theorem.-
3. The Coefficients of Convergent Series in Complete Systems.-
4. Extension of a System of Functions to an ONS.- III. Properties of Complete Systems; the Role of the Haar System.-
1. The Basic Construction.-
2. Divergent Fourier Series.- 3. Bases in Function Spaces and Majorants of Fourier Series.-
4. Fourier Coefficients of Continuous Functions.-
5. Some More Results about the Haar System.- IV. Series from L2 and Peculiarities of Fourier Series from the Spaces Lp.-
1. The Matrices Ak.-
2. Lebesgue Functions and Convergence Almost Everywhere.-
3. Convergence of Fourier Series of Functions from Various Classes.-
4. Sums of Fourier Series.-
5. Conditional Bases in Hubert Space.
Terminology. Preliminary Information.- I. Convergence of Fourier Series in the Classical Sense. Lebesgue Functions of Bounded Systems.-
1. The Fundamental Inequality.-
2. The Logarithmic Growth of the Lebesgue Functions. Divergence of Fourier Series.-
3. Series with Decreasing Coefficients.-
4. Generalizations, Counterexamples, Problems.-
5. The Stability of the Orthogonalization Operator.- II. Convergence Almost Everywhere; Conditions on the Coefficients.-
1. The Class S?.-
2. Garsia's Theorem.-
3. The Coefficients of Convergent Series in Complete Systems.-
4. Extension of a System of Functions to an ONS.- III. Properties of Complete Systems; the Role of the Haar System.-
1. The Basic Construction.-
2. Divergent Fourier Series.- 3. Bases in Function Spaces and Majorants of Fourier Series.-
4. Fourier Coefficients of Continuous Functions.-
5. Some More Results about the Haar System.- IV. Series from L2 and Peculiarities of Fourier Series from the Spaces Lp.-
1. The Matrices Ak.-
2. Lebesgue Functions and Convergence Almost Everywhere.-
3. Convergence of Fourier Series of Functions from Various Classes.-
4. Sums of Fourier Series.-
5. Conditional Bases in Hubert Space.
1. The Fundamental Inequality.-
2. The Logarithmic Growth of the Lebesgue Functions. Divergence of Fourier Series.-
3. Series with Decreasing Coefficients.-
4. Generalizations, Counterexamples, Problems.-
5. The Stability of the Orthogonalization Operator.- II. Convergence Almost Everywhere; Conditions on the Coefficients.-
1. The Class S?.-
2. Garsia's Theorem.-
3. The Coefficients of Convergent Series in Complete Systems.-
4. Extension of a System of Functions to an ONS.- III. Properties of Complete Systems; the Role of the Haar System.-
1. The Basic Construction.-
2. Divergent Fourier Series.- 3. Bases in Function Spaces and Majorants of Fourier Series.-
4. Fourier Coefficients of Continuous Functions.-
5. Some More Results about the Haar System.- IV. Series from L2 and Peculiarities of Fourier Series from the Spaces Lp.-
1. The Matrices Ak.-
2. Lebesgue Functions and Convergence Almost Everywhere.-
3. Convergence of Fourier Series of Functions from Various Classes.-
4. Sums of Fourier Series.-
5. Conditional Bases in Hubert Space.