Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis.
Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities.
The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically.
Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities.
The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically.
- Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible
- Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com
- Glossary of text mining terms provided in the appendix
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"They ve done it again. From the same industry leaders who brought you the "bible" of data mining comes the definitive, go-to text mining resource. This book empowers you to dig in and seize value, with over two dozen hands-on tutorials that drive an incredible range of applications such as predicting marketing success and detecting customer sentiment, criminal lies, writing authorship, and patient schizophrenia. These step-by-step tutorials immediately place you in the practitioner s driver s seat, executing on text analytics. Beyond this, 17 more chapters cover the latest methods and the leading tools, making this the most comprehensive resource, and earning it a well-deserved place on your desk aside the authors data mining handbook." --Eric Siegel, Ph.D., Founder, Predictive Analytics World, Text Analytics World and Prediction Impact, Inc.
"Of the number of statistics books that are published each year, only a few stand out as really being important, meaning that they positively influence how future research is done in the subject area of the text. I believe that Practical Text Mining is just such a book." --Joseph M. Hilbe, JD, PhD, Arizona State University and Jet Propulsion Laboratory
"When you want real help extracting insight from the mountains of text that you re facing, this is the book to turn to for immediate practical advice." --Karl Rexer, PhD, President, Rexer Analytics, Boston, MA
"The underlying premise is that almost all data in databases takes the form of unstructured text, or summaries of unstructured text, and that historians, marketers, crime investigators, and others need to know how to search that text for meaningful patterns - a very different process than reading. Contributors in a range of fields share their insights and experience with the process. After setting out the principles, they present tutorials and case studies, then move on to advanced topics." --Reference and Research Book News, Inc.
"The authors of Practical Text Mining and Statistical Analysis for Nonstructured Text Data Applications have managed to produce three books in one. First, in 17 chapters they give a friendly yet comprehensive introduction to the huge field of text mining, a field comprising techniques from several different disciplines and a variety of different tasks. Miner and his colleagues have produced a readable overview of the area that is sure to help the practitioner navigate this large and unruly ocean of techniques. Second, the authors provide a comprehensive list and review of both the commercial and free software available to perform most text data mining tasks. Finally, and most importantly, the authors have also provided an amazing collection of tutorials and case studies. The tutorials illustrate various text mining scenarios and paths actually taken by researchers, while the case studies go into even more depth, showing both the methodology used and the business decisions taken based on the analysis. These practical step-by-step guides are impressive not only in the breadth of their applications but in the depth and detail that each case study delivers. The studies are authored by several guest authors in addition to the book authors and are built on real problems with real solutions. These case studies and tutorials alone make the book worth having. I have never seen such a collection of real business problems published in any field, much less in such a new field as text mining. These, together with the explanations in the chapters, should provide the practitioner wishing to get a broad view of the text mining field an invaluable resource for both learning and practice." --Richard De Veaux Professor of Statistics; Dept. of Mathematics and Statistics; Williams Collegeutions
"Of the number of statistics books that are published each year, only a few stand out as really being important, meaning that they positively influence how future research is done in the subject area of the text. I believe that Practical Text Mining is just such a book." --Joseph M. Hilbe, JD, PhD, Arizona State University and Jet Propulsion Laboratory
"When you want real help extracting insight from the mountains of text that you re facing, this is the book to turn to for immediate practical advice." --Karl Rexer, PhD, President, Rexer Analytics, Boston, MA
"The underlying premise is that almost all data in databases takes the form of unstructured text, or summaries of unstructured text, and that historians, marketers, crime investigators, and others need to know how to search that text for meaningful patterns - a very different process than reading. Contributors in a range of fields share their insights and experience with the process. After setting out the principles, they present tutorials and case studies, then move on to advanced topics." --Reference and Research Book News, Inc.
"The authors of Practical Text Mining and Statistical Analysis for Nonstructured Text Data Applications have managed to produce three books in one. First, in 17 chapters they give a friendly yet comprehensive introduction to the huge field of text mining, a field comprising techniques from several different disciplines and a variety of different tasks. Miner and his colleagues have produced a readable overview of the area that is sure to help the practitioner navigate this large and unruly ocean of techniques. Second, the authors provide a comprehensive list and review of both the commercial and free software available to perform most text data mining tasks. Finally, and most importantly, the authors have also provided an amazing collection of tutorials and case studies. The tutorials illustrate various text mining scenarios and paths actually taken by researchers, while the case studies go into even more depth, showing both the methodology used and the business decisions taken based on the analysis. These practical step-by-step guides are impressive not only in the breadth of their applications but in the depth and detail that each case study delivers. The studies are authored by several guest authors in addition to the book authors and are built on real problems with real solutions. These case studies and tutorials alone make the book worth having. I have never seen such a collection of real business problems published in any field, much less in such a new field as text mining. These, together with the explanations in the chapters, should provide the practitioner wishing to get a broad view of the text mining field an invaluable resource for both learning and practice." --Richard De Veaux Professor of Statistics; Dept. of Mathematics and Statistics; Williams Collegeutions