31,95 €
31,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
16 °P sammeln
31,95 €
31,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
16 °P sammeln
Als Download kaufen
31,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
16 °P sammeln
Jetzt verschenken
31,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
16 °P sammeln
  • Format: ePub

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.Youll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Mller and Sarah Guido focus on the practical…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 27.1MB
Produktbeschreibung
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.Youll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Mller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, youll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Sarah is a data scientist who has spent a lot of time working in start-ups. She loves Python, machine learning, large quantities of data, and the tech world. She is an accomplished conference speaker, currently resides in New York City, and attended the University of Michigan for grad school.