96,29 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: PDF

This book describes the tools, developed by the author, for perturbing endogenous mechano-sensitive ion channels for magneto-mechanical neuro-modulation. He explores the ways in which these tools compare against existing ones such as electricity, chemicals, optogenetics, and techniques like thermos/magneto-genetics. The author also reports on two platforms—magnetic ratcheting and magnetic microfluidics for directed evolution and high throughput culture of magnetotactic bacteria—that produce high quality magnetic nanoparticles for biomedical applications like neural stimulations. This thesis…mehr

Produktbeschreibung
This book describes the tools, developed by the author, for perturbing endogenous mechano-sensitive ion channels for magneto-mechanical neuro-modulation. He explores the ways in which these tools compare against existing ones such as electricity, chemicals, optogenetics, and techniques like thermos/magneto-genetics. The author also reports on two platforms—magnetic ratcheting and magnetic microfluidics for directed evolution and high throughput culture of magnetotactic bacteria—that produce high quality magnetic nanoparticles for biomedical applications like neural stimulations. This thesis was submitted to and approved by the University of California, Los Angeles.
Autorenporträt
Andy Kah Ping Tay received his PhD in Bioengineering from the University of California, Los Angeles. He has published over 20 articles, with more under review, and is the recipient of 7 academic awards in 2017 alone, including the SciFinder® Future Leaders Program from the American Chemical Society, and the TUM Postdoc Mobility Grant from Technical University of Munich.