46,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Ce travail traite de l'optimisation d'un point de vue mathématique, élargi à la théorie du contrôle, et aborde une application concrète d'ingénierie mathématique. Il s'adresse aussi bien aux étudiants, ayant suivi une formation universitaire ou une école d'ingénieurs, qu'à des ingénieurs chercheurs. Ce manuscrit est divisé en quatre chapitres, ceux-ci pouvant être lus de façon relativement indépendante. Le premier chapitre est consacré aux notions d'optimisation multicritères et de systèmes de contrôle. Dans le chapitre 2, un algorithme est élaboré pour la résolution d'un problème linéaire…mehr

Produktbeschreibung
Ce travail traite de l'optimisation d'un point de vue mathématique, élargi à la théorie du contrôle, et aborde une application concrète d'ingénierie mathématique. Il s'adresse aussi bien aux étudiants, ayant suivi une formation universitaire ou une école d'ingénieurs, qu'à des ingénieurs chercheurs. Ce manuscrit est divisé en quatre chapitres, ceux-ci pouvant être lus de façon relativement indépendante. Le premier chapitre est consacré aux notions d'optimisation multicritères et de systèmes de contrôle. Dans le chapitre 2, un algorithme est élaboré pour la résolution d'un problème linéaire multicritères impliquant des paramètres indéterminés dans le cas de l'ignorance totale. Le chapitre 3 est centré sur les problèmes multicritères de contrôle optimal. La dernière partie consiste en l'élaboration d'une stratégie de commande d'un véhicule électrique en temps fixe pour un parcours donné. Le modèle se présente sous forme d'un problème de contrôle optimal à commande bang-bang. Celui-ci est régi par une dynamique non linéaire de trois équations différentielles. L'indice de performance retenu est la minimisation de la consommation de l'énergie sur un cycle de temps prédéterminé.
Autorenporträt
Maître de Conférences depuis 2011, A. Kader MERAKEB est actuellement enseignant chercheur à l'Université de Tizi-Ouzou, où il enseigne le contrôle optimal et l'optimisation en Master. Membre du laboratoire L2CSP, il traite des sujets de contrôle optimal appliqué à l'engineering et à la robotique.