Achille Messac
Optimization in Practice with MATLAB
Achille Messac
Optimization in Practice with MATLAB
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB(R) software.
Andere Kunden interessierten sich auch für
- Advanced Modeling with the MATLAB Reservoir Simulation Toolbox185,99 €
- Roy H KwonIntroduction to Linear Optimization and Extensions with MATLAB(R)175,99 €
- Mirroyal IsmayilovImplementing a Synthetic Smart Grid Design using Matlab17,95 €
- David SteelThe Elements and Practice of Rigging, Seamanship, and Naval Tactics30,99 €
- Andrew Jackson DowningA Treatise on the Theory and Practice of Landscape Gardening50,99 €
- H. E. MilnerThe Art and Practice of Landscape Gardening30,99 €
- Al HassanIslamic Technology49,99 €
-
-
-
This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB(R) software.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 502
- Erscheinungstermin: 6. März 2018
- Englisch
- Abmessung: 260mm x 183mm x 31mm
- Gewicht: 1132g
- ISBN-13: 9781107109186
- ISBN-10: 1107109183
- Artikelnr.: 42316444
- Verlag: Cambridge University Press
- Seitenzahl: 502
- Erscheinungstermin: 6. März 2018
- Englisch
- Abmessung: 260mm x 183mm x 31mm
- Gewicht: 1132g
- ISBN-13: 9781107109186
- ISBN-10: 1107109183
- Artikelnr.: 42316444
Dr Achille Messac received his B.S., M.S., and Ph.D. from MIT in Aerospace Engineering. Dr Messac is a Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and the American Society of Mechanical Engineers. He has authored or co-authored over 70 journal and 130 conference articles, chaired several international conferences, delivered several keynote addresses, and received the prestigious AIAA Multidisciplinary Design Optimization Award. He has taught or advised undergraduate and graduate students in the areas of design and optimization for over three decades at Rensselaer Polytechnic Institute, MIT, Syracuse University, Mississippi State and Northeastern University.
Part I. Helpful Preliminaries: 1. MATLAB® as a computational tool
2. Mathematical preliminaries
Part II. Using Optimization - the Road Map: 3. Welcome to the fascinating world of optimization
4. Analysis, design, optimization, and modeling
5. Introducing linear and nonlinear programming
Part III. Using Optimization - Practical Essentials: 6. Multiobjective optimization
7. Numerical essentials
8. Global optimization basics
9. Discrete optimization basics
10. Practicing optimization - larger examples
Part IV. Going Deeper: Inside the Codes and Theoretical Aspects: 11. Linear programming
12. Nonlinear programming with no constraints
13. Nonlinear programming with constraints
Part V. More Advanced Topics in Optimization: 14. Discrete optimization
15. Modeling complex systems: surrogate modeling and design space reduction
16. Design optimization under uncertainty
17. Methods for Pareto frontier generation/representation
18. Physical programming for multiobjective optimization
19. Evolutionary algorithms.
2. Mathematical preliminaries
Part II. Using Optimization - the Road Map: 3. Welcome to the fascinating world of optimization
4. Analysis, design, optimization, and modeling
5. Introducing linear and nonlinear programming
Part III. Using Optimization - Practical Essentials: 6. Multiobjective optimization
7. Numerical essentials
8. Global optimization basics
9. Discrete optimization basics
10. Practicing optimization - larger examples
Part IV. Going Deeper: Inside the Codes and Theoretical Aspects: 11. Linear programming
12. Nonlinear programming with no constraints
13. Nonlinear programming with constraints
Part V. More Advanced Topics in Optimization: 14. Discrete optimization
15. Modeling complex systems: surrogate modeling and design space reduction
16. Design optimization under uncertainty
17. Methods for Pareto frontier generation/representation
18. Physical programming for multiobjective optimization
19. Evolutionary algorithms.
Part I. Helpful Preliminaries: 1. MATLAB® as a computational tool
2. Mathematical preliminaries
Part II. Using Optimization - the Road Map: 3. Welcome to the fascinating world of optimization
4. Analysis, design, optimization, and modeling
5. Introducing linear and nonlinear programming
Part III. Using Optimization - Practical Essentials: 6. Multiobjective optimization
7. Numerical essentials
8. Global optimization basics
9. Discrete optimization basics
10. Practicing optimization - larger examples
Part IV. Going Deeper: Inside the Codes and Theoretical Aspects: 11. Linear programming
12. Nonlinear programming with no constraints
13. Nonlinear programming with constraints
Part V. More Advanced Topics in Optimization: 14. Discrete optimization
15. Modeling complex systems: surrogate modeling and design space reduction
16. Design optimization under uncertainty
17. Methods for Pareto frontier generation/representation
18. Physical programming for multiobjective optimization
19. Evolutionary algorithms.
2. Mathematical preliminaries
Part II. Using Optimization - the Road Map: 3. Welcome to the fascinating world of optimization
4. Analysis, design, optimization, and modeling
5. Introducing linear and nonlinear programming
Part III. Using Optimization - Practical Essentials: 6. Multiobjective optimization
7. Numerical essentials
8. Global optimization basics
9. Discrete optimization basics
10. Practicing optimization - larger examples
Part IV. Going Deeper: Inside the Codes and Theoretical Aspects: 11. Linear programming
12. Nonlinear programming with no constraints
13. Nonlinear programming with constraints
Part V. More Advanced Topics in Optimization: 14. Discrete optimization
15. Modeling complex systems: surrogate modeling and design space reduction
16. Design optimization under uncertainty
17. Methods for Pareto frontier generation/representation
18. Physical programming for multiobjective optimization
19. Evolutionary algorithms.