32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

Coloured conducting textiles have shown a wide range of potential applications in heating fabrics, electromagnetic wave absorption, and wearable optoelectronic devices. This research aimed at clarifying some issues occurred in the research project on coloured conductive textiles. The investigation firstly clarified a possible chemical reaction that took place between a commercial dispersing dye (Terasil Red G) and the conducting polymer polypyrrole, through chemical separation, structural identification and spectrum characterisations. Then, a series of acidic dyes were introduced into…mehr

Produktbeschreibung
Coloured conducting textiles have shown a wide range of potential applications in heating fabrics, electromagnetic wave absorption, and wearable optoelectronic devices. This research aimed at clarifying some issues occurred in the research project on coloured conductive textiles. The investigation firstly clarified a possible chemical reaction that took place between a commercial dispersing dye (Terasil Red G) and the conducting polymer polypyrrole, through chemical separation, structural identification and spectrum characterisations. Then, a series of acidic dyes were introduced into polypyrrole matrix during the vapour coating of conducting polymer on the wool fabrics. Colour and thermal stability studies were conducted. Finally, the polypyrrole nanoparticles (particle size several~200nm) were prepared by a microemulsion polymerisation technique. An acid dye was used as the dopant to re-dope the nanoparticles. The effect of the acidic dye on the optical absorption of nanoparticles was studied. Applying the conducting nanoparticles on wool fabrics may open an alternative path to achieve the coloured conducting textiles.
Autorenporträt
Dr. Hongxia Wang graduated in 2010 with a PhD degree in Materials Engineering from Deakin University. She is an Australian Postdoctoral Research Fellow at the Institute for Frontier Materials, Deakin University. Her research interest is in liquid repellent technology for functional fabrics and novel applications.