75,99 €
inkl. MwSt.
Versandkostenfrei*
Erscheint vorauss. 30. Juni 2025
payback
38 °P sammeln
  • Gebundenes Buch

Confidently analyze, interpret and act on financial data with this practical introduction to the fundamentals of financial data science. Master the fundamentals with step-by-step introductions to core topics will equip you with a solid foundation for applying data science techniques to real-world complex financial problems. Extract meaningful insights as you learn how to use data to lead informed, data-driven decisions, with over 50 examples and case studies and hands-on Matlab and Python code. Explore cutting-edge techniques and tools in machine learning for financial data analysis, including…mehr

Produktbeschreibung
Confidently analyze, interpret and act on financial data with this practical introduction to the fundamentals of financial data science. Master the fundamentals with step-by-step introductions to core topics will equip you with a solid foundation for applying data science techniques to real-world complex financial problems. Extract meaningful insights as you learn how to use data to lead informed, data-driven decisions, with over 50 examples and case studies and hands-on Matlab and Python code. Explore cutting-edge techniques and tools in machine learning for financial data analysis, including deep learning and natural language processing. Accessible to readers without a specialized background in finance or machine learning, and including coverage of data representation and visualization, data models and estimation, principal component analysis, clustering methods, optimization tools, mean/variance portfolio optimization and financial networks, this is the ideal introduction for financial services professionals, and graduate students in finance and data science.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Giuseppe C. Calafiore is a Professor of Automatic Control at the Electronics and Telecommunications Department at Politecnico di Torino, where he coordinates the Control Systems and Data Science group, and a former Visiting Professor at the University of California, Berkeley, where he co-taught graduate courses in financial data science. He is a co-author of Optimization Models (2014), and a Fellow of the IEEE.