110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
55 °P sammeln
  • Broschiertes Buch

The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and…mehr

Produktbeschreibung
The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and singular perturbation boundary value problems. The investigation is based on new coercivity inequalities.

The book will be of value to professional mathematicians, as well as advanced students in the fields of numerical analysis, functional analysis, and ordinary and partial differential equations.
Autorenporträt
The present monograph is devoted to the construction and investigation of new difference schemes for approximating the solutions of regular and singular perturbation boundary-value problems for partial differential equations. This approach permits extending essentially a class of problems where the theory of difference methods is applicable. Namely, it is now possible to investigate differential equations with variable coefficients and regular and singular perturbation boundary-value problems. The investigation is based on new coercivity inequalities.
The book will be of value for professional mathematicians as well as for advanced students in the fields of numerical analysis, functional analysis, and differential equations.