160,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 2-4 Wochen
payback
80 °P sammeln
  • Broschiertes Buch

Cyber-Physical Power System State Estimation updates classic state estimation tools to enable real-time operations and optimize reliability in modern electric power systems. The work introduces and contextualizes the core concepts and classic approaches to state estimation modeling. It builds on these classic approaches with a suite of data-driven models and non-synchronized measurement tools to reflect current measurement trends required by increasingly more sophisticated grids. Chapters outline core definitions, concepts and the network analysis procedures involved in the real-time operation…mehr

Produktbeschreibung
Cyber-Physical Power System State Estimation updates classic state estimation tools to enable real-time operations and optimize reliability in modern electric power systems. The work introduces and contextualizes the core concepts and classic approaches to state estimation modeling. It builds on these classic approaches with a suite of data-driven models and non-synchronized measurement tools to reflect current measurement trends required by increasingly more sophisticated grids. Chapters outline core definitions, concepts and the network analysis procedures involved in the real-time operation of EPS.

Specific sections introduce power flow problem in EPS, highlighting network component modeling and power flow equations for state estimation before addressing quasi static state estimation in electrical power systems using Weighted Least Squares (WLS) classical and alternatives formulations. Particularities of the state estimation process in distribution systems are also considered. Finally, the work goes on to address observability analysis, measurement redundancy and the processing of gross errors through the analysis of WLS static state estimator residuals.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Arturo Bretas received the B.Sc. and M.Sc. degrees in Electrical Engineering from the University of Sao Paulo in 1995 and 1998, respectively, and the Ph.D. degree from Virginia Tech in 2001. He is currently a Full Professor with the Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA. His research interests include cyber-physical systems security, smart grids, state estimation, and reliability optimization.