- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
It is well known that most important electronic devices use Schottky junctions and heterojunctions. Unfortunately there is not an advanced book introducing heterojunctions systematically. Introduction to Organic Semiconductor Heterojunctions fills the gap. In this book, the authors provide a comprehensive discussion and systematic introduction on the state-of-the-art technologies as well as application of organic semiconductor heterojunctions.
First book to systematically introduce organic heterojunctions Arms readers with theoretical, experimental and applied aspects of organic…mehr
Andere Kunden interessierten sich auch für
- Morphotropic Phase Boundary Perovskites, High Strain Piezoelectrics, and Dielectric Ceramics156,99 €
- Acers (American Ceramics Society The)Progress in High-Temperature Superconductors216,99 €
- Advances in Electronic Ceramic Materials154,99 €
- Xin LiuOrganic Semiconductor Lasers and Tailored Nanostructures for Raman Spectroscopy46,00 €
- Michele MucciniOrganic Light-Emitting Transistors149,99 €
- Processing of High Temperature Superconductors154,99 €
- Ceramic Materials CT Vol 150155,99 €
-
-
-
It is well known that most important electronic devices use Schottky junctions and heterojunctions. Unfortunately there is not an advanced book introducing heterojunctions systematically. Introduction to Organic Semiconductor Heterojunctions fills the gap. In this book, the authors provide a comprehensive discussion and systematic introduction on the state-of-the-art technologies as well as application of organic semiconductor heterojunctions.
First book to systematically introduce organic heterojunctions
Arms readers with theoretical, experimental and applied aspects of organic heterojunctions
The Chinese edition of the book is part of the Chinese Academy of Sciences' Distinguished Young Scholar Scientific Book Series
Introduction to Organic Semiconductor Heterojunctions is an ideal and valued reference for researchers and graduate students focusing on organic thin film devices like organic light-emitting diodes (OLEDs), organic photovoltaic (OPV) cells, and organic field-effect transistors (OFETs). Instructors can use the book as a supplementary text for a semiconductor physics or organic electronics course, giving students a better feel for the application of organic thin film devices.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
First book to systematically introduce organic heterojunctions
Arms readers with theoretical, experimental and applied aspects of organic heterojunctions
The Chinese edition of the book is part of the Chinese Academy of Sciences' Distinguished Young Scholar Scientific Book Series
Introduction to Organic Semiconductor Heterojunctions is an ideal and valued reference for researchers and graduate students focusing on organic thin film devices like organic light-emitting diodes (OLEDs), organic photovoltaic (OPV) cells, and organic field-effect transistors (OFETs). Instructors can use the book as a supplementary text for a semiconductor physics or organic electronics course, giving students a better feel for the application of organic thin film devices.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 14582594000
- 1. Auflage
- Seitenzahl: 256
- Erscheinungstermin: 15. November 2010
- Englisch
- Abmessung: 235mm x 157mm x 19mm
- Gewicht: 606g
- ISBN-13: 9780470825945
- ISBN-10: 0470825944
- Artikelnr.: 31187575
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 14582594000
- 1. Auflage
- Seitenzahl: 256
- Erscheinungstermin: 15. November 2010
- Englisch
- Abmessung: 235mm x 157mm x 19mm
- Gewicht: 606g
- ISBN-13: 9780470825945
- ISBN-10: 0470825944
- Artikelnr.: 31187575
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
DONGHANG YAN Changchun Institute of Applied Chemistry, chinese Academy of Sciences, chaina HAIBO WANG Changchun Institute of Applied Chemistry, chinese Academy of Sciences, chaina BAOXUN DU Institute of Semiconductors Chinese Academy of Sciences, China
Foreword ix
Preface xi
About the Authors xiii
1 Organic Heterostructure in Electronic Devices 1
1.1 Organic Light-Emitting Diodes 1
1.2 Ambipolar Organic Field-Effect Transistors 1
1.3 Organic Photovoltaic Cells 3
1.4 Parameters in Thin-Film Transistors 5
References 6
2 Weak Epitaxy Growth of Organic Semiconductor Thin Film 7
2.1 Fabrication of Organic Ultrathin Film by Vacuum Deposition 8
2.1.1 Organic Thin Film of Molecular Beam Epitaxy 8
2.1.2 Organic Thin Film of Vapor Deposition 8
2.1.3 Oriented Organic Molecular Thin Film 12
2.1.4 Organic Molecular Thin Film of Vapor Deposition Controlled by
Kinetics and Thermodynamics 13
2.2 Vapor-Deposited Thin Film of Rod-Like and Banana-Shaped Organic
Molecules 15
2.2.1 Vapor-Deposited Thin Film of Pentacene 15
2.2.2 Vapor-Deposited Thin Film of a-Hexathiophene 19
2.2.3 Vapor-Deposited Thin Film of Banana-Shaped Organic Molecule 23
2.2.4 Vapor-Deposited Thin Film of Para-Sexiphenyl 27
2.3 Heteroepitaxy of Disk-Like Organic Molecule on Para-Sexiphenyl
Ultrathin Film by Vapor Deposition 40
2.3.1 p-6P and Planar Metal Phthalocyanines 40
2.3.2 p-6P and Nonplanar Metal Phthalocyanine 55
2.3.3 Heteroepitaxy Growth of Perylene Diimide Derivatives on p-6P 58
2.4 Evolution of Film Growth 2,5-Bis (4-Biphenylyl) Bithiophene (BP2T) 64
2.4.1 Growth Behavior of BP2T Thin Films 64
2.4.2 Heteroepitaxy Growth of ZnPc on BP2T Thin Films 68
2.5 Heteroepitaxy Between Disk-Like Molecules 75
2.5.1 Stability of H2Pc Film Fabricated by WEG 75
2.5.2 WEG of H2Pc Film by Kinetic Control 78
2.5.3 Heteroepitaxy Growth of F16CuPc on H2Pc Thin Film 79
2.6 Perspectives 79
2.6.1 Nucleation Process of Organic Ultrathin Film 81
2.6.2 Contacted and Oriented Process of the Nucleus on the Substrate 81
2.6.3 Liquid-Crystal-Like Behavior and Flexible Boundary of Organic
Ultrathin Film 81
2.6.4 Extent of Liquid-Crystal-Like Behavior of Organic Ultrathin Film 83
2.6.5 Weak Epitaxy Growth of Organic Ultrathin Film 83
References 84
3 Interfacial Electronic Structure in Organic Semiconductor Heterojunctions
87
3.1 Ambipolar Organic Transistors and Organic Heterostructures 88
3.2 CuPc/F16CuPc Heterojunction Effect 89
3.2.1 Normally On Operation Mode of CuPc/F16CuPc Heterojunction Transistors
89
3.2.2 Experiment of Planar Heterojunction Diode 91
3.2.3 Carrier Accumulation at CuPc/F16CuPc Heterojunction Interface 91
3.2.4 CuPc/F16CuPc Heterojunction Diodes with Reverse Rectifying
Characteristics 93
3.2.5 Charge Accumulation Thickness in CuPc/F16CuPc Heterojunction Films 94
3.2.6 Direct Measurement of CuPc/F16CuPc Interfacial Electronic Structure
by UPS 96
3.2.7 Difference in UPS Measurement Results 98
3.3 Anderson Rule and Ideal Interfacial Electronic Structure of CuPc/F16
CuPc Heterojunction 98
3.3.1 Anderson Affinity Rule 99
3.3.2 Ideal Interfacial Electronic Structure for the CuPc/F16CuPc
Heterojunction 99
3.4 Organic and Inorganic Semiconductor Heterojunction 102
3.4.1 Comparison of the Organic Accumulation Heterojunction and Inorganic
p-n Homojunction 102
3.4.2 Categories of Semiconductor Heterojunctions 103
3.5 BP2T/F16CuPc Heterojunction 107
3.5.1 Heterojunction Effect of BP2T/F16CuPc 107
3.5.2 Energy Band Diagram of BP2T/F16CuPc Heterojunction 107
3.5.3 BP2T/F16CuPc Heterojunction Diodes 111
3.6 ZnPc/C60 Heterojunction 112
3.6.1 ZnPc/C60 Heterojunction Transistors 112
3.6.2 Energy Band Profile of ZnPc and C60 Heterojunction 113
3.6.3 ZnPc and C60 Heterojunction Diode 114
3.7 n-n Isotype Organic Heterojunction 115
3.7.1 Interfacial Electronic Structure Observed by Kelvin Probe Force
Microscopy 115
3.7.2 Normally On Heterojunction Transistors 116
3.7.3 F16CuPc/SnCl2Pc Heterojunction Diode 117
3.8 p-p Isotype Organic Heterojunction 118
3.8.1 Ambipolar Heterojunction Field-Effect Transistors and CMOS Diode 118
3.8.2 Interfacial Electronic Structure of Ph3/VOPc Heterojunction 119
3.8.3 Heterojunction Field-Effect Transistors with Various Thicknesses 120
3.9 Perspectives 121
3.9.1 Characterization of Electronic Structure of Organic Semiconductors
121
3.9.2 Measurement and Theoretic Prediction of Fundamental Parameters of
Organic Semiconductors 121
3.9.3 Application of Organic Semiconductors 121
3.9.4 Choice and Optimization of the System of Organic Semiconductor
Heterojunction 122
3.9.5 Formation Process of Organic Semiconductor Heterojunction 122
References 122
4 Charge Transport in Organic Heterojunctions 125
4.1 Conductance of CuPc/F16CuPc Heterojunction Films 125
4.1.1 Single-Crystal-Like CuPc/F16CuPc Heterojunctions and Their Electronic
Properties 126
4.1.2 Hall Effect in CuPc/F16CuPc Heterojunction Films 131
4.1.3 Temperature Dependence of Conductance of CuPc/F16CuPc WEG Films 135
4.1.4 Charge Transport Model in CuPc/F16CuPc WEG Films 136
4.2 Organic Heterojunction Effect in WEG Films 137
4.3 Charge Transport in BP2T/F16CuPc Bipolar Heterojunction Transistors 139
4.3.1 BP2T/F16CuPc Heterojunction MOS Diode 140
4.3.2 Simulating Bipolar Transport Using Two Single-Layer Transistors 141
4.3.3 Model of Heterojunction Bipolar Transistors 141
4.4 Perspectives 151
4.4.1 Organic Single-Crystal Devices 151
4.4.2 Hetero-Epitaxy Growth of Molecules on Organic Single-Crystal 152
4.4.3 Polycrystalline Films and Devices Taking Delocalized Carriers 152
4.4.4 Simplex Materials with Bipolar Transport Characteristics 152
References 152
5 Organic Heterojunction Applications in Electronic Devices 155
5.1 Organic Heterojunction Film as a Device Active Layer 155
5.1.1 Organic Field Effect Transistor 155
5.1.2 Organic Solar Cells 166
5.2 Improvement in Contact of Organic Devices 170
5.2.1 Highly Conductive Material to Improve Transistor Contact 172
5.2.2 Highly Conductive Heterojunction to Improve Contact in Transistor 173
5.2.3 Improvement in Contact of Organic Solar Cell 177
5.3 Heterojunction Film as Connecting Unit in Tandem Devices 178
5.3.1 Tandem Organic Light-Emitting Diode 178
5.3.2 Tandem Organic Photovoltaic Cell 182
5.4 VOPc Thin Film Transistor Suitable for Flat Panel Display 185
5.4.1 Static Behavior of VOPc TFTs 185
5.4.2 Transient Behavior of VOPc TFTs 186
5.4.3 Electrical Properties in VOPc MIS Diodes 189
5.4.4 Static and Transient Behavior of VOPc TFTs with Organic
Heterojunction Buffer Layer 192
5.4.5 Stability of VOPc TFTs 193
5.5 OTFT Active Matrix Display 198
5.5.1 OTFT-LCD 198
5.5.2 OTFT-OLED 200
5.6 Perspectives 203
5.6.1 Organic Quantum Well Crystal Emission 204
5.6.2 Organic Photovoltaic Cell 204
5.6.3 Organic Sensor 204
5.6.4 Organic Thin Film Transistor 204
References 205
6 Organic Heterojunction Semiconductors 209
6.1 P3HT:C60 Blending System 209
6.1.1 High Efficiency Organic Solar Cell 209
6.1.2 Characteristics of the P3HT/C60 Heterojunction 210
6.1.3 Accumulation-Type Heterojunction Photovoltaic Cells 212
6.1.4 Heterojunction Effect Affects Conductivity Character 214
6.1.5 Doping Effect Affects Conductivity Character 215
6.2 Ambipolar Transport in Heterotype Interpenetrating Network
Heterostructure 216
6.2.1 Solution-Processed Ambipolar Bulk Heterojunction Transistors 216
6.2.2 Vacuum Vapor Deposition Ambipolar Bulk Heterojunction Transistors 217
6.3 Organic Isotype Heterojunction Blends 218
6.3.1 CuPc and CoPc Sandwich Transistors 218
6.3.2 CuPc and CoPc Blends 221
6.3.3 CuPc and NiPc Blends 225
6.4 Organic Semiconductor Superlattice 228
6.4.1 Development Course of Organic Superlattice and Organic Quantum Well
228
6.4.2 Disk-Like Molecule Phthalocyanine Organic Superlattice 230
6.5 Perspectives 240
6.5.1 Interpenetrating Networks of Multicomponent System 240
6.5.2 Organic Quantum Well and Organic Superlattice 241
6.5.3 Doping Effect 241
References 241
Index 243
Preface xi
About the Authors xiii
1 Organic Heterostructure in Electronic Devices 1
1.1 Organic Light-Emitting Diodes 1
1.2 Ambipolar Organic Field-Effect Transistors 1
1.3 Organic Photovoltaic Cells 3
1.4 Parameters in Thin-Film Transistors 5
References 6
2 Weak Epitaxy Growth of Organic Semiconductor Thin Film 7
2.1 Fabrication of Organic Ultrathin Film by Vacuum Deposition 8
2.1.1 Organic Thin Film of Molecular Beam Epitaxy 8
2.1.2 Organic Thin Film of Vapor Deposition 8
2.1.3 Oriented Organic Molecular Thin Film 12
2.1.4 Organic Molecular Thin Film of Vapor Deposition Controlled by
Kinetics and Thermodynamics 13
2.2 Vapor-Deposited Thin Film of Rod-Like and Banana-Shaped Organic
Molecules 15
2.2.1 Vapor-Deposited Thin Film of Pentacene 15
2.2.2 Vapor-Deposited Thin Film of a-Hexathiophene 19
2.2.3 Vapor-Deposited Thin Film of Banana-Shaped Organic Molecule 23
2.2.4 Vapor-Deposited Thin Film of Para-Sexiphenyl 27
2.3 Heteroepitaxy of Disk-Like Organic Molecule on Para-Sexiphenyl
Ultrathin Film by Vapor Deposition 40
2.3.1 p-6P and Planar Metal Phthalocyanines 40
2.3.2 p-6P and Nonplanar Metal Phthalocyanine 55
2.3.3 Heteroepitaxy Growth of Perylene Diimide Derivatives on p-6P 58
2.4 Evolution of Film Growth 2,5-Bis (4-Biphenylyl) Bithiophene (BP2T) 64
2.4.1 Growth Behavior of BP2T Thin Films 64
2.4.2 Heteroepitaxy Growth of ZnPc on BP2T Thin Films 68
2.5 Heteroepitaxy Between Disk-Like Molecules 75
2.5.1 Stability of H2Pc Film Fabricated by WEG 75
2.5.2 WEG of H2Pc Film by Kinetic Control 78
2.5.3 Heteroepitaxy Growth of F16CuPc on H2Pc Thin Film 79
2.6 Perspectives 79
2.6.1 Nucleation Process of Organic Ultrathin Film 81
2.6.2 Contacted and Oriented Process of the Nucleus on the Substrate 81
2.6.3 Liquid-Crystal-Like Behavior and Flexible Boundary of Organic
Ultrathin Film 81
2.6.4 Extent of Liquid-Crystal-Like Behavior of Organic Ultrathin Film 83
2.6.5 Weak Epitaxy Growth of Organic Ultrathin Film 83
References 84
3 Interfacial Electronic Structure in Organic Semiconductor Heterojunctions
87
3.1 Ambipolar Organic Transistors and Organic Heterostructures 88
3.2 CuPc/F16CuPc Heterojunction Effect 89
3.2.1 Normally On Operation Mode of CuPc/F16CuPc Heterojunction Transistors
89
3.2.2 Experiment of Planar Heterojunction Diode 91
3.2.3 Carrier Accumulation at CuPc/F16CuPc Heterojunction Interface 91
3.2.4 CuPc/F16CuPc Heterojunction Diodes with Reverse Rectifying
Characteristics 93
3.2.5 Charge Accumulation Thickness in CuPc/F16CuPc Heterojunction Films 94
3.2.6 Direct Measurement of CuPc/F16CuPc Interfacial Electronic Structure
by UPS 96
3.2.7 Difference in UPS Measurement Results 98
3.3 Anderson Rule and Ideal Interfacial Electronic Structure of CuPc/F16
CuPc Heterojunction 98
3.3.1 Anderson Affinity Rule 99
3.3.2 Ideal Interfacial Electronic Structure for the CuPc/F16CuPc
Heterojunction 99
3.4 Organic and Inorganic Semiconductor Heterojunction 102
3.4.1 Comparison of the Organic Accumulation Heterojunction and Inorganic
p-n Homojunction 102
3.4.2 Categories of Semiconductor Heterojunctions 103
3.5 BP2T/F16CuPc Heterojunction 107
3.5.1 Heterojunction Effect of BP2T/F16CuPc 107
3.5.2 Energy Band Diagram of BP2T/F16CuPc Heterojunction 107
3.5.3 BP2T/F16CuPc Heterojunction Diodes 111
3.6 ZnPc/C60 Heterojunction 112
3.6.1 ZnPc/C60 Heterojunction Transistors 112
3.6.2 Energy Band Profile of ZnPc and C60 Heterojunction 113
3.6.3 ZnPc and C60 Heterojunction Diode 114
3.7 n-n Isotype Organic Heterojunction 115
3.7.1 Interfacial Electronic Structure Observed by Kelvin Probe Force
Microscopy 115
3.7.2 Normally On Heterojunction Transistors 116
3.7.3 F16CuPc/SnCl2Pc Heterojunction Diode 117
3.8 p-p Isotype Organic Heterojunction 118
3.8.1 Ambipolar Heterojunction Field-Effect Transistors and CMOS Diode 118
3.8.2 Interfacial Electronic Structure of Ph3/VOPc Heterojunction 119
3.8.3 Heterojunction Field-Effect Transistors with Various Thicknesses 120
3.9 Perspectives 121
3.9.1 Characterization of Electronic Structure of Organic Semiconductors
121
3.9.2 Measurement and Theoretic Prediction of Fundamental Parameters of
Organic Semiconductors 121
3.9.3 Application of Organic Semiconductors 121
3.9.4 Choice and Optimization of the System of Organic Semiconductor
Heterojunction 122
3.9.5 Formation Process of Organic Semiconductor Heterojunction 122
References 122
4 Charge Transport in Organic Heterojunctions 125
4.1 Conductance of CuPc/F16CuPc Heterojunction Films 125
4.1.1 Single-Crystal-Like CuPc/F16CuPc Heterojunctions and Their Electronic
Properties 126
4.1.2 Hall Effect in CuPc/F16CuPc Heterojunction Films 131
4.1.3 Temperature Dependence of Conductance of CuPc/F16CuPc WEG Films 135
4.1.4 Charge Transport Model in CuPc/F16CuPc WEG Films 136
4.2 Organic Heterojunction Effect in WEG Films 137
4.3 Charge Transport in BP2T/F16CuPc Bipolar Heterojunction Transistors 139
4.3.1 BP2T/F16CuPc Heterojunction MOS Diode 140
4.3.2 Simulating Bipolar Transport Using Two Single-Layer Transistors 141
4.3.3 Model of Heterojunction Bipolar Transistors 141
4.4 Perspectives 151
4.4.1 Organic Single-Crystal Devices 151
4.4.2 Hetero-Epitaxy Growth of Molecules on Organic Single-Crystal 152
4.4.3 Polycrystalline Films and Devices Taking Delocalized Carriers 152
4.4.4 Simplex Materials with Bipolar Transport Characteristics 152
References 152
5 Organic Heterojunction Applications in Electronic Devices 155
5.1 Organic Heterojunction Film as a Device Active Layer 155
5.1.1 Organic Field Effect Transistor 155
5.1.2 Organic Solar Cells 166
5.2 Improvement in Contact of Organic Devices 170
5.2.1 Highly Conductive Material to Improve Transistor Contact 172
5.2.2 Highly Conductive Heterojunction to Improve Contact in Transistor 173
5.2.3 Improvement in Contact of Organic Solar Cell 177
5.3 Heterojunction Film as Connecting Unit in Tandem Devices 178
5.3.1 Tandem Organic Light-Emitting Diode 178
5.3.2 Tandem Organic Photovoltaic Cell 182
5.4 VOPc Thin Film Transistor Suitable for Flat Panel Display 185
5.4.1 Static Behavior of VOPc TFTs 185
5.4.2 Transient Behavior of VOPc TFTs 186
5.4.3 Electrical Properties in VOPc MIS Diodes 189
5.4.4 Static and Transient Behavior of VOPc TFTs with Organic
Heterojunction Buffer Layer 192
5.4.5 Stability of VOPc TFTs 193
5.5 OTFT Active Matrix Display 198
5.5.1 OTFT-LCD 198
5.5.2 OTFT-OLED 200
5.6 Perspectives 203
5.6.1 Organic Quantum Well Crystal Emission 204
5.6.2 Organic Photovoltaic Cell 204
5.6.3 Organic Sensor 204
5.6.4 Organic Thin Film Transistor 204
References 205
6 Organic Heterojunction Semiconductors 209
6.1 P3HT:C60 Blending System 209
6.1.1 High Efficiency Organic Solar Cell 209
6.1.2 Characteristics of the P3HT/C60 Heterojunction 210
6.1.3 Accumulation-Type Heterojunction Photovoltaic Cells 212
6.1.4 Heterojunction Effect Affects Conductivity Character 214
6.1.5 Doping Effect Affects Conductivity Character 215
6.2 Ambipolar Transport in Heterotype Interpenetrating Network
Heterostructure 216
6.2.1 Solution-Processed Ambipolar Bulk Heterojunction Transistors 216
6.2.2 Vacuum Vapor Deposition Ambipolar Bulk Heterojunction Transistors 217
6.3 Organic Isotype Heterojunction Blends 218
6.3.1 CuPc and CoPc Sandwich Transistors 218
6.3.2 CuPc and CoPc Blends 221
6.3.3 CuPc and NiPc Blends 225
6.4 Organic Semiconductor Superlattice 228
6.4.1 Development Course of Organic Superlattice and Organic Quantum Well
228
6.4.2 Disk-Like Molecule Phthalocyanine Organic Superlattice 230
6.5 Perspectives 240
6.5.1 Interpenetrating Networks of Multicomponent System 240
6.5.2 Organic Quantum Well and Organic Superlattice 241
6.5.3 Doping Effect 241
References 241
Index 243
Foreword ix
Preface xi
About the Authors xiii
1 Organic Heterostructure in Electronic Devices 1
1.1 Organic Light-Emitting Diodes 1
1.2 Ambipolar Organic Field-Effect Transistors 1
1.3 Organic Photovoltaic Cells 3
1.4 Parameters in Thin-Film Transistors 5
References 6
2 Weak Epitaxy Growth of Organic Semiconductor Thin Film 7
2.1 Fabrication of Organic Ultrathin Film by Vacuum Deposition 8
2.1.1 Organic Thin Film of Molecular Beam Epitaxy 8
2.1.2 Organic Thin Film of Vapor Deposition 8
2.1.3 Oriented Organic Molecular Thin Film 12
2.1.4 Organic Molecular Thin Film of Vapor Deposition Controlled by
Kinetics and Thermodynamics 13
2.2 Vapor-Deposited Thin Film of Rod-Like and Banana-Shaped Organic
Molecules 15
2.2.1 Vapor-Deposited Thin Film of Pentacene 15
2.2.2 Vapor-Deposited Thin Film of a-Hexathiophene 19
2.2.3 Vapor-Deposited Thin Film of Banana-Shaped Organic Molecule 23
2.2.4 Vapor-Deposited Thin Film of Para-Sexiphenyl 27
2.3 Heteroepitaxy of Disk-Like Organic Molecule on Para-Sexiphenyl
Ultrathin Film by Vapor Deposition 40
2.3.1 p-6P and Planar Metal Phthalocyanines 40
2.3.2 p-6P and Nonplanar Metal Phthalocyanine 55
2.3.3 Heteroepitaxy Growth of Perylene Diimide Derivatives on p-6P 58
2.4 Evolution of Film Growth 2,5-Bis (4-Biphenylyl) Bithiophene (BP2T) 64
2.4.1 Growth Behavior of BP2T Thin Films 64
2.4.2 Heteroepitaxy Growth of ZnPc on BP2T Thin Films 68
2.5 Heteroepitaxy Between Disk-Like Molecules 75
2.5.1 Stability of H2Pc Film Fabricated by WEG 75
2.5.2 WEG of H2Pc Film by Kinetic Control 78
2.5.3 Heteroepitaxy Growth of F16CuPc on H2Pc Thin Film 79
2.6 Perspectives 79
2.6.1 Nucleation Process of Organic Ultrathin Film 81
2.6.2 Contacted and Oriented Process of the Nucleus on the Substrate 81
2.6.3 Liquid-Crystal-Like Behavior and Flexible Boundary of Organic
Ultrathin Film 81
2.6.4 Extent of Liquid-Crystal-Like Behavior of Organic Ultrathin Film 83
2.6.5 Weak Epitaxy Growth of Organic Ultrathin Film 83
References 84
3 Interfacial Electronic Structure in Organic Semiconductor Heterojunctions
87
3.1 Ambipolar Organic Transistors and Organic Heterostructures 88
3.2 CuPc/F16CuPc Heterojunction Effect 89
3.2.1 Normally On Operation Mode of CuPc/F16CuPc Heterojunction Transistors
89
3.2.2 Experiment of Planar Heterojunction Diode 91
3.2.3 Carrier Accumulation at CuPc/F16CuPc Heterojunction Interface 91
3.2.4 CuPc/F16CuPc Heterojunction Diodes with Reverse Rectifying
Characteristics 93
3.2.5 Charge Accumulation Thickness in CuPc/F16CuPc Heterojunction Films 94
3.2.6 Direct Measurement of CuPc/F16CuPc Interfacial Electronic Structure
by UPS 96
3.2.7 Difference in UPS Measurement Results 98
3.3 Anderson Rule and Ideal Interfacial Electronic Structure of CuPc/F16
CuPc Heterojunction 98
3.3.1 Anderson Affinity Rule 99
3.3.2 Ideal Interfacial Electronic Structure for the CuPc/F16CuPc
Heterojunction 99
3.4 Organic and Inorganic Semiconductor Heterojunction 102
3.4.1 Comparison of the Organic Accumulation Heterojunction and Inorganic
p-n Homojunction 102
3.4.2 Categories of Semiconductor Heterojunctions 103
3.5 BP2T/F16CuPc Heterojunction 107
3.5.1 Heterojunction Effect of BP2T/F16CuPc 107
3.5.2 Energy Band Diagram of BP2T/F16CuPc Heterojunction 107
3.5.3 BP2T/F16CuPc Heterojunction Diodes 111
3.6 ZnPc/C60 Heterojunction 112
3.6.1 ZnPc/C60 Heterojunction Transistors 112
3.6.2 Energy Band Profile of ZnPc and C60 Heterojunction 113
3.6.3 ZnPc and C60 Heterojunction Diode 114
3.7 n-n Isotype Organic Heterojunction 115
3.7.1 Interfacial Electronic Structure Observed by Kelvin Probe Force
Microscopy 115
3.7.2 Normally On Heterojunction Transistors 116
3.7.3 F16CuPc/SnCl2Pc Heterojunction Diode 117
3.8 p-p Isotype Organic Heterojunction 118
3.8.1 Ambipolar Heterojunction Field-Effect Transistors and CMOS Diode 118
3.8.2 Interfacial Electronic Structure of Ph3/VOPc Heterojunction 119
3.8.3 Heterojunction Field-Effect Transistors with Various Thicknesses 120
3.9 Perspectives 121
3.9.1 Characterization of Electronic Structure of Organic Semiconductors
121
3.9.2 Measurement and Theoretic Prediction of Fundamental Parameters of
Organic Semiconductors 121
3.9.3 Application of Organic Semiconductors 121
3.9.4 Choice and Optimization of the System of Organic Semiconductor
Heterojunction 122
3.9.5 Formation Process of Organic Semiconductor Heterojunction 122
References 122
4 Charge Transport in Organic Heterojunctions 125
4.1 Conductance of CuPc/F16CuPc Heterojunction Films 125
4.1.1 Single-Crystal-Like CuPc/F16CuPc Heterojunctions and Their Electronic
Properties 126
4.1.2 Hall Effect in CuPc/F16CuPc Heterojunction Films 131
4.1.3 Temperature Dependence of Conductance of CuPc/F16CuPc WEG Films 135
4.1.4 Charge Transport Model in CuPc/F16CuPc WEG Films 136
4.2 Organic Heterojunction Effect in WEG Films 137
4.3 Charge Transport in BP2T/F16CuPc Bipolar Heterojunction Transistors 139
4.3.1 BP2T/F16CuPc Heterojunction MOS Diode 140
4.3.2 Simulating Bipolar Transport Using Two Single-Layer Transistors 141
4.3.3 Model of Heterojunction Bipolar Transistors 141
4.4 Perspectives 151
4.4.1 Organic Single-Crystal Devices 151
4.4.2 Hetero-Epitaxy Growth of Molecules on Organic Single-Crystal 152
4.4.3 Polycrystalline Films and Devices Taking Delocalized Carriers 152
4.4.4 Simplex Materials with Bipolar Transport Characteristics 152
References 152
5 Organic Heterojunction Applications in Electronic Devices 155
5.1 Organic Heterojunction Film as a Device Active Layer 155
5.1.1 Organic Field Effect Transistor 155
5.1.2 Organic Solar Cells 166
5.2 Improvement in Contact of Organic Devices 170
5.2.1 Highly Conductive Material to Improve Transistor Contact 172
5.2.2 Highly Conductive Heterojunction to Improve Contact in Transistor 173
5.2.3 Improvement in Contact of Organic Solar Cell 177
5.3 Heterojunction Film as Connecting Unit in Tandem Devices 178
5.3.1 Tandem Organic Light-Emitting Diode 178
5.3.2 Tandem Organic Photovoltaic Cell 182
5.4 VOPc Thin Film Transistor Suitable for Flat Panel Display 185
5.4.1 Static Behavior of VOPc TFTs 185
5.4.2 Transient Behavior of VOPc TFTs 186
5.4.3 Electrical Properties in VOPc MIS Diodes 189
5.4.4 Static and Transient Behavior of VOPc TFTs with Organic
Heterojunction Buffer Layer 192
5.4.5 Stability of VOPc TFTs 193
5.5 OTFT Active Matrix Display 198
5.5.1 OTFT-LCD 198
5.5.2 OTFT-OLED 200
5.6 Perspectives 203
5.6.1 Organic Quantum Well Crystal Emission 204
5.6.2 Organic Photovoltaic Cell 204
5.6.3 Organic Sensor 204
5.6.4 Organic Thin Film Transistor 204
References 205
6 Organic Heterojunction Semiconductors 209
6.1 P3HT:C60 Blending System 209
6.1.1 High Efficiency Organic Solar Cell 209
6.1.2 Characteristics of the P3HT/C60 Heterojunction 210
6.1.3 Accumulation-Type Heterojunction Photovoltaic Cells 212
6.1.4 Heterojunction Effect Affects Conductivity Character 214
6.1.5 Doping Effect Affects Conductivity Character 215
6.2 Ambipolar Transport in Heterotype Interpenetrating Network
Heterostructure 216
6.2.1 Solution-Processed Ambipolar Bulk Heterojunction Transistors 216
6.2.2 Vacuum Vapor Deposition Ambipolar Bulk Heterojunction Transistors 217
6.3 Organic Isotype Heterojunction Blends 218
6.3.1 CuPc and CoPc Sandwich Transistors 218
6.3.2 CuPc and CoPc Blends 221
6.3.3 CuPc and NiPc Blends 225
6.4 Organic Semiconductor Superlattice 228
6.4.1 Development Course of Organic Superlattice and Organic Quantum Well
228
6.4.2 Disk-Like Molecule Phthalocyanine Organic Superlattice 230
6.5 Perspectives 240
6.5.1 Interpenetrating Networks of Multicomponent System 240
6.5.2 Organic Quantum Well and Organic Superlattice 241
6.5.3 Doping Effect 241
References 241
Index 243
Preface xi
About the Authors xiii
1 Organic Heterostructure in Electronic Devices 1
1.1 Organic Light-Emitting Diodes 1
1.2 Ambipolar Organic Field-Effect Transistors 1
1.3 Organic Photovoltaic Cells 3
1.4 Parameters in Thin-Film Transistors 5
References 6
2 Weak Epitaxy Growth of Organic Semiconductor Thin Film 7
2.1 Fabrication of Organic Ultrathin Film by Vacuum Deposition 8
2.1.1 Organic Thin Film of Molecular Beam Epitaxy 8
2.1.2 Organic Thin Film of Vapor Deposition 8
2.1.3 Oriented Organic Molecular Thin Film 12
2.1.4 Organic Molecular Thin Film of Vapor Deposition Controlled by
Kinetics and Thermodynamics 13
2.2 Vapor-Deposited Thin Film of Rod-Like and Banana-Shaped Organic
Molecules 15
2.2.1 Vapor-Deposited Thin Film of Pentacene 15
2.2.2 Vapor-Deposited Thin Film of a-Hexathiophene 19
2.2.3 Vapor-Deposited Thin Film of Banana-Shaped Organic Molecule 23
2.2.4 Vapor-Deposited Thin Film of Para-Sexiphenyl 27
2.3 Heteroepitaxy of Disk-Like Organic Molecule on Para-Sexiphenyl
Ultrathin Film by Vapor Deposition 40
2.3.1 p-6P and Planar Metal Phthalocyanines 40
2.3.2 p-6P and Nonplanar Metal Phthalocyanine 55
2.3.3 Heteroepitaxy Growth of Perylene Diimide Derivatives on p-6P 58
2.4 Evolution of Film Growth 2,5-Bis (4-Biphenylyl) Bithiophene (BP2T) 64
2.4.1 Growth Behavior of BP2T Thin Films 64
2.4.2 Heteroepitaxy Growth of ZnPc on BP2T Thin Films 68
2.5 Heteroepitaxy Between Disk-Like Molecules 75
2.5.1 Stability of H2Pc Film Fabricated by WEG 75
2.5.2 WEG of H2Pc Film by Kinetic Control 78
2.5.3 Heteroepitaxy Growth of F16CuPc on H2Pc Thin Film 79
2.6 Perspectives 79
2.6.1 Nucleation Process of Organic Ultrathin Film 81
2.6.2 Contacted and Oriented Process of the Nucleus on the Substrate 81
2.6.3 Liquid-Crystal-Like Behavior and Flexible Boundary of Organic
Ultrathin Film 81
2.6.4 Extent of Liquid-Crystal-Like Behavior of Organic Ultrathin Film 83
2.6.5 Weak Epitaxy Growth of Organic Ultrathin Film 83
References 84
3 Interfacial Electronic Structure in Organic Semiconductor Heterojunctions
87
3.1 Ambipolar Organic Transistors and Organic Heterostructures 88
3.2 CuPc/F16CuPc Heterojunction Effect 89
3.2.1 Normally On Operation Mode of CuPc/F16CuPc Heterojunction Transistors
89
3.2.2 Experiment of Planar Heterojunction Diode 91
3.2.3 Carrier Accumulation at CuPc/F16CuPc Heterojunction Interface 91
3.2.4 CuPc/F16CuPc Heterojunction Diodes with Reverse Rectifying
Characteristics 93
3.2.5 Charge Accumulation Thickness in CuPc/F16CuPc Heterojunction Films 94
3.2.6 Direct Measurement of CuPc/F16CuPc Interfacial Electronic Structure
by UPS 96
3.2.7 Difference in UPS Measurement Results 98
3.3 Anderson Rule and Ideal Interfacial Electronic Structure of CuPc/F16
CuPc Heterojunction 98
3.3.1 Anderson Affinity Rule 99
3.3.2 Ideal Interfacial Electronic Structure for the CuPc/F16CuPc
Heterojunction 99
3.4 Organic and Inorganic Semiconductor Heterojunction 102
3.4.1 Comparison of the Organic Accumulation Heterojunction and Inorganic
p-n Homojunction 102
3.4.2 Categories of Semiconductor Heterojunctions 103
3.5 BP2T/F16CuPc Heterojunction 107
3.5.1 Heterojunction Effect of BP2T/F16CuPc 107
3.5.2 Energy Band Diagram of BP2T/F16CuPc Heterojunction 107
3.5.3 BP2T/F16CuPc Heterojunction Diodes 111
3.6 ZnPc/C60 Heterojunction 112
3.6.1 ZnPc/C60 Heterojunction Transistors 112
3.6.2 Energy Band Profile of ZnPc and C60 Heterojunction 113
3.6.3 ZnPc and C60 Heterojunction Diode 114
3.7 n-n Isotype Organic Heterojunction 115
3.7.1 Interfacial Electronic Structure Observed by Kelvin Probe Force
Microscopy 115
3.7.2 Normally On Heterojunction Transistors 116
3.7.3 F16CuPc/SnCl2Pc Heterojunction Diode 117
3.8 p-p Isotype Organic Heterojunction 118
3.8.1 Ambipolar Heterojunction Field-Effect Transistors and CMOS Diode 118
3.8.2 Interfacial Electronic Structure of Ph3/VOPc Heterojunction 119
3.8.3 Heterojunction Field-Effect Transistors with Various Thicknesses 120
3.9 Perspectives 121
3.9.1 Characterization of Electronic Structure of Organic Semiconductors
121
3.9.2 Measurement and Theoretic Prediction of Fundamental Parameters of
Organic Semiconductors 121
3.9.3 Application of Organic Semiconductors 121
3.9.4 Choice and Optimization of the System of Organic Semiconductor
Heterojunction 122
3.9.5 Formation Process of Organic Semiconductor Heterojunction 122
References 122
4 Charge Transport in Organic Heterojunctions 125
4.1 Conductance of CuPc/F16CuPc Heterojunction Films 125
4.1.1 Single-Crystal-Like CuPc/F16CuPc Heterojunctions and Their Electronic
Properties 126
4.1.2 Hall Effect in CuPc/F16CuPc Heterojunction Films 131
4.1.3 Temperature Dependence of Conductance of CuPc/F16CuPc WEG Films 135
4.1.4 Charge Transport Model in CuPc/F16CuPc WEG Films 136
4.2 Organic Heterojunction Effect in WEG Films 137
4.3 Charge Transport in BP2T/F16CuPc Bipolar Heterojunction Transistors 139
4.3.1 BP2T/F16CuPc Heterojunction MOS Diode 140
4.3.2 Simulating Bipolar Transport Using Two Single-Layer Transistors 141
4.3.3 Model of Heterojunction Bipolar Transistors 141
4.4 Perspectives 151
4.4.1 Organic Single-Crystal Devices 151
4.4.2 Hetero-Epitaxy Growth of Molecules on Organic Single-Crystal 152
4.4.3 Polycrystalline Films and Devices Taking Delocalized Carriers 152
4.4.4 Simplex Materials with Bipolar Transport Characteristics 152
References 152
5 Organic Heterojunction Applications in Electronic Devices 155
5.1 Organic Heterojunction Film as a Device Active Layer 155
5.1.1 Organic Field Effect Transistor 155
5.1.2 Organic Solar Cells 166
5.2 Improvement in Contact of Organic Devices 170
5.2.1 Highly Conductive Material to Improve Transistor Contact 172
5.2.2 Highly Conductive Heterojunction to Improve Contact in Transistor 173
5.2.3 Improvement in Contact of Organic Solar Cell 177
5.3 Heterojunction Film as Connecting Unit in Tandem Devices 178
5.3.1 Tandem Organic Light-Emitting Diode 178
5.3.2 Tandem Organic Photovoltaic Cell 182
5.4 VOPc Thin Film Transistor Suitable for Flat Panel Display 185
5.4.1 Static Behavior of VOPc TFTs 185
5.4.2 Transient Behavior of VOPc TFTs 186
5.4.3 Electrical Properties in VOPc MIS Diodes 189
5.4.4 Static and Transient Behavior of VOPc TFTs with Organic
Heterojunction Buffer Layer 192
5.4.5 Stability of VOPc TFTs 193
5.5 OTFT Active Matrix Display 198
5.5.1 OTFT-LCD 198
5.5.2 OTFT-OLED 200
5.6 Perspectives 203
5.6.1 Organic Quantum Well Crystal Emission 204
5.6.2 Organic Photovoltaic Cell 204
5.6.3 Organic Sensor 204
5.6.4 Organic Thin Film Transistor 204
References 205
6 Organic Heterojunction Semiconductors 209
6.1 P3HT:C60 Blending System 209
6.1.1 High Efficiency Organic Solar Cell 209
6.1.2 Characteristics of the P3HT/C60 Heterojunction 210
6.1.3 Accumulation-Type Heterojunction Photovoltaic Cells 212
6.1.4 Heterojunction Effect Affects Conductivity Character 214
6.1.5 Doping Effect Affects Conductivity Character 215
6.2 Ambipolar Transport in Heterotype Interpenetrating Network
Heterostructure 216
6.2.1 Solution-Processed Ambipolar Bulk Heterojunction Transistors 216
6.2.2 Vacuum Vapor Deposition Ambipolar Bulk Heterojunction Transistors 217
6.3 Organic Isotype Heterojunction Blends 218
6.3.1 CuPc and CoPc Sandwich Transistors 218
6.3.2 CuPc and CoPc Blends 221
6.3.3 CuPc and NiPc Blends 225
6.4 Organic Semiconductor Superlattice 228
6.4.1 Development Course of Organic Superlattice and Organic Quantum Well
228
6.4.2 Disk-Like Molecule Phthalocyanine Organic Superlattice 230
6.5 Perspectives 240
6.5.1 Interpenetrating Networks of Multicomponent System 240
6.5.2 Organic Quantum Well and Organic Superlattice 241
6.5.3 Doping Effect 241
References 241
Index 243