Beiwei Zhang, Y. F. Li
Automatic Calibration and Reconstruction for Active Vision Systems (eBook, PDF)
96,29 €
inkl. MwSt.
Sofort per Download lieferbar
Beiwei Zhang, Y. F. Li
Automatic Calibration and Reconstruction for Active Vision Systems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D Euclidean reconstruction by using the image-to-world transformation is investigated. Lastly, linear calibration algorithms for the catadioptric camera are considered, and the homographic matrix and fundamental matrix are extensively studied. In these methods, analytic solutions are provided for the…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 4.17MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Rihard KarbaTerminological Dictionary of Automatic Control, Systems and Robotics (eBook, PDF)171,19 €
- Shengyong ChenActive Sensor Planning for Multiview Vision Tasks (eBook, PDF)110,95 €
- Miguel ArandaControl of Multiple Robots Using Vision Sensors (eBook, PDF)117,69 €
- Konstantinos DalamagkidisOn Integrating Unmanned Aircraft Systems into the National Airspace System (eBook, PDF)149,79 €
- New Development in Robot Vision (eBook, PDF)39,95 €
- Abdullah Aamir HayatVision Based Identification and Force Control of Industrial Robots (eBook, PDF)149,79 €
- Jürgen BeyererMachine Vision (eBook, PDF)118,95 €
-
-
-
In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D Euclidean reconstruction by using the image-to-world transformation is investigated. Lastly, linear calibration algorithms for the catadioptric camera are considered, and the homographic matrix and fundamental matrix are extensively studied. In these methods, analytic solutions are provided for the computational efficiency and redundancy in the data can be easily incorporated to improve reliability of the estimations. This volume will therefore prove valuable and practical tool for researchers and practioners working in image processing and computer vision and related subjects.
Produktdetails
- Produktdetails
- Verlag: Springer Netherland
- Erscheinungstermin: 2. Januar 2012
- Englisch
- ISBN-13: 9789400726543
- Artikelnr.: 37411608
- Verlag: Springer Netherland
- Erscheinungstermin: 2. Januar 2012
- Englisch
- ISBN-13: 9789400726543
- Artikelnr.: 37411608
Chapter 1 Introduction.- 1.1 Vision Framework.- 1.2 Background.- 1.2.1 Calibrated Reconstruction.- 1.2.1.1 Static Calibration based methods.- 1.2.1.2 Dynamic Calibration based methods.- 1.2.1.3 Relative Pose Problem.- 1.2.2 Uncalibrated 3D reconstruction.- 1.2.2.1 Factorization-based method.- 1.2.2.2 Stratification-based method.- 1.2.2.3 Using Structured Light System.- 1.3 Scope.- 1.3.1 System Calibration.- 1.3.2 Plane-based Homography.- 1.3.3 Structured Light System.- 1.3.4 Omni-directional Vision System.- 1.4 Objectives.- 1.5 Book Structures.- Chapter 2 System Description.- 2.1 System Introduction.- 2.1.1 Structured Light System.- 2.1.2 Omni-directional Vision System.- 2.2 Component Modeling.- 2.2.1 Convex Mirror.- 2.2.2 Camera Model.- 2.2.3 Projector Model.- 2.3 Pattern Coding Strategy.- 2.3.1 Introduction.- 2.3.2 Color-Encoded Light Pattern.- 2.3.3 Decoding the Light Pattern.- 2.4 Some Preliminaries.- 2.4.1 Notations and Definitions.- 2.4.2 Cross Ratio.- 2.4.3 Plane-based Homography.- 2.4.4 Fundamental Matrix.- Chapter 3 Static Calibration.- 3.1 Calibration Theory.- 3.2 Polygon-based Calibration.- 3.2.1 Design of the planar pattern.- 3.2.2 Solving the vanishing line.- 3.2.3 Solving the projection of a circle.- 3.2.4 Solving the projection of circular point.- 3.2.5 Algorithm.- 3.2.6 Discussion.- 3.3 Intersectant-Circle-based Calibration.- 3.3.1 Planar Pattern Design.- 3.3.2 Solution for the circular point.- 3.4 Concentric-Circle-based Calibration.- 3.4.1 Some Preliminaries.- 3.4.2 The polynomial eigenvalue problem.- 3.4.3 Orthogonality-based Algorithm.- 3.4.4 Experiments.- 3.4.4.1 Numerical Simulations.- 3.4.4.2 Real Image Experiment.- 3.5 Line-based Distortion Correction.- 3.5.1 The distortion model.- 3.5.2 The correction procedure.- 3.5.3 Examples.- 3.6 Summary.- Chapter 4 Homography-based Dynamic Calibration.- 4.1 Problem Statement.- 4.2 System Constraints.- 4.2.1 Two Propositions.- 4.3 Calibration Algorithm.- 4.3.1 Solution for the Scale Factor.- 4.3.2 Solutions for the Translation Vector.- 4.3.3 Solution for Rotation Matrix.- 4.3.4 Implementation Procedure.- 4.4 Error Analyses.- 4.4.1 Errors in the Homographic matrix.- 4.4.2 Errors in the translation vector.- 4.4.3 Errors in the rotation matrix.- 4.5 Experiments Study.- 4.5.1 Computer Simulation.- 4.5.2 Real Data Experiment.- 4.6 Summary.- Chapter 5 3D Reconstruction with Image-to-World Transformation.- 5.1 Introduction.- 5.2 Image-to-World Transformation matrix.- 5.3 Two-Known-Plane based method.- 5.3.1 Static Calibration.- 5.3.2 Determining the on-line Homography.- 5.3.3 Euclidean 3D Reconstruction.- 5.3.4 Configuration of the two scene planes.- 5.3.5 Computational Complexity Study.- 5.3.6 Reconstruction Examples.- 5.4 One-Known-Plane based method.- 5.4.1 Calibration Tasks.- 5.4.2 Generic Homography.- 5.4.3 Dynamic Calibration.- 5.4.4 Reconstruction Procedure.- 5.4.5. Reconstruction Examples.- 5.5 Summary.- Chapter 6 Catadioptric Vision System.- 6.1 Introduction.- 6.1.1 Wide Field-of-View System.- 6.1.2 Calibration of Omni-directional Vision System.- 6.1.3 Test Example.- 6.2 Panoramic Stereoscopic System.- 6.2.1 System Configuration.- 6.2.2 Co-axis Installation.- 6.2.3 System Model.- 6.2.4 Epipolar geometry and 3D reconstruction.- 6.2.5 Calibration Procedure.- 6.2.5.1 Initialization of the Parameters.- 6.2.5.2 Non-linear optimization.- 6.3 Parabolic Camera System.- 6.3.1 System Configuration.- 6.3.2 System Modeling.- 6.3.3 Calibration with Lifted-Fundamental-matrix.- 6.3.3.1 The lifted fundamental matrix.- 6.3.3.2 Calibration Procedure.- 6.3.3.3 Simplified Case.- 6.3.3.4 Discussion.- 6.3.4 Calibration Based on Homographic matrix.- 6.3.4.1 Plane-to-mirror Homography.- 6.3.4.2 Calibration Procedure.- 6.3.4.3 Calibration Test.- 6.3.5 Polynomial Eigenvalue Problem.- 6.3.5.1 Mirror-to-mirror Homography.- 6.3.5.2 Constraints and Solutions.- 6.3.5.3 Test Example.- 6.4 Hyperbolic Camera System.- 6.4.1 System Structure.- 6.4.2 Imaging Process and Back Projection.- 6.4.3 Polynomial Eigenvalue Problem.- 6.5 Summary.- Chapter 7 Conclusions and Future Expectation.- 7.1 Conclusions.- 7.2 Future Expectations.- References.
Chapter 1 Introduction.- 1.1 Vision Framework.- 1.2 Background.- 1.2.1 Calibrated Reconstruction.- 1.2.1.1 Static Calibration based methods.- 1.2.1.2 Dynamic Calibration based methods.- 1.2.1.3 Relative Pose Problem.- 1.2.2 Uncalibrated 3D reconstruction.- 1.2.2.1 Factorization-based method.- 1.2.2.2 Stratification-based method.- 1.2.2.3 Using Structured Light System.- 1.3 Scope.- 1.3.1 System Calibration.- 1.3.2 Plane-based Homography.- 1.3.3 Structured Light System.- 1.3.4 Omni-directional Vision System.- 1.4 Objectives.- 1.5 Book Structures.- Chapter 2 System Description.- 2.1 System Introduction.- 2.1.1 Structured Light System.- 2.1.2 Omni-directional Vision System.- 2.2 Component Modeling.- 2.2.1 Convex Mirror.- 2.2.2 Camera Model.- 2.2.3 Projector Model.- 2.3 Pattern Coding Strategy.- 2.3.1 Introduction.- 2.3.2 Color-Encoded Light Pattern.- 2.3.3 Decoding the Light Pattern.- 2.4 Some Preliminaries.- 2.4.1 Notations and Definitions.- 2.4.2 Cross Ratio.- 2.4.3 Plane-based Homography.- 2.4.4 Fundamental Matrix.- Chapter 3 Static Calibration.- 3.1 Calibration Theory.- 3.2 Polygon-based Calibration.- 3.2.1 Design of the planar pattern.- 3.2.2 Solving the vanishing line.- 3.2.3 Solving the projection of a circle.- 3.2.4 Solving the projection of circular point.- 3.2.5 Algorithm.- 3.2.6 Discussion.- 3.3 Intersectant-Circle-based Calibration.- 3.3.1 Planar Pattern Design.- 3.3.2 Solution for the circular point.- 3.4 Concentric-Circle-based Calibration.- 3.4.1 Some Preliminaries.- 3.4.2 The polynomial eigenvalue problem.- 3.4.3 Orthogonality-based Algorithm.- 3.4.4 Experiments.- 3.4.4.1 Numerical Simulations.- 3.4.4.2 Real Image Experiment.- 3.5 Line-based Distortion Correction.- 3.5.1 The distortion model.- 3.5.2 The correction procedure.- 3.5.3 Examples.- 3.6 Summary.- Chapter 4 Homography-based Dynamic Calibration.- 4.1 Problem Statement.- 4.2 System Constraints.- 4.2.1 Two Propositions.- 4.3 Calibration Algorithm.- 4.3.1 Solution for the Scale Factor.- 4.3.2 Solutions for the Translation Vector.- 4.3.3 Solution for Rotation Matrix.- 4.3.4 Implementation Procedure.- 4.4 Error Analyses.- 4.4.1 Errors in the Homographic matrix.- 4.4.2 Errors in the translation vector.- 4.4.3 Errors in the rotation matrix.- 4.5 Experiments Study.- 4.5.1 Computer Simulation.- 4.5.2 Real Data Experiment.- 4.6 Summary.- Chapter 5 3D Reconstruction with Image-to-World Transformation.- 5.1 Introduction.- 5.2 Image-to-World Transformation matrix.- 5.3 Two-Known-Plane based method.- 5.3.1 Static Calibration.- 5.3.2 Determining the on-line Homography.- 5.3.3 Euclidean 3D Reconstruction.- 5.3.4 Configuration of the two scene planes.- 5.3.5 Computational Complexity Study.- 5.3.6 Reconstruction Examples.- 5.4 One-Known-Plane based method.- 5.4.1 Calibration Tasks.- 5.4.2 Generic Homography.- 5.4.3 Dynamic Calibration.- 5.4.4 Reconstruction Procedure.- 5.4.5. Reconstruction Examples.- 5.5 Summary.- Chapter 6 Catadioptric Vision System.- 6.1 Introduction.- 6.1.1 Wide Field-of-View System.- 6.1.2 Calibration of Omni-directional Vision System.- 6.1.3 Test Example.- 6.2 Panoramic Stereoscopic System.- 6.2.1 System Configuration.- 6.2.2 Co-axis Installation.- 6.2.3 System Model.- 6.2.4 Epipolar geometry and 3D reconstruction.- 6.2.5 Calibration Procedure.- 6.2.5.1 Initialization of the Parameters.- 6.2.5.2 Non-linear optimization.- 6.3 Parabolic Camera System.- 6.3.1 System Configuration.- 6.3.2 System Modeling.- 6.3.3 Calibration with Lifted-Fundamental-matrix.- 6.3.3.1 The lifted fundamental matrix.- 6.3.3.2 Calibration Procedure.- 6.3.3.3 Simplified Case.- 6.3.3.4 Discussion.- 6.3.4 Calibration Based on Homographic matrix.- 6.3.4.1 Plane-to-mirror Homography.- 6.3.4.2 Calibration Procedure.- 6.3.4.3 Calibration Test.- 6.3.5 Polynomial Eigenvalue Problem.- 6.3.5.1 Mirror-to-mirror Homography.- 6.3.5.2 Constraints and Solutions.- 6.3.5.3 Test Example.- 6.4 Hyperbolic Camera System.- 6.4.1 System Structure.- 6.4.2 Imaging Process and Back Projection.- 6.4.3 Polynomial Eigenvalue Problem.- 6.5 Summary.- Chapter 7 Conclusions and Future Expectation.- 7.1 Conclusions.- 7.2 Future Expectations.- References.
Chapter 1 Introduction.- 1.1 Vision Framework.- 1.2 Background.- 1.2.1 Calibrated Reconstruction.- 1.2.1.1 Static Calibration based methods.- 1.2.1.2 Dynamic Calibration based methods.- 1.2.1.3 Relative Pose Problem.- 1.2.2 Uncalibrated 3D reconstruction.- 1.2.2.1 Factorization-based method.- 1.2.2.2 Stratification-based method.- 1.2.2.3 Using Structured Light System.- 1.3 Scope.- 1.3.1 System Calibration.- 1.3.2 Plane-based Homography.- 1.3.3 Structured Light System.- 1.3.4 Omni-directional Vision System.- 1.4 Objectives.- 1.5 Book Structures.- Chapter 2 System Description.- 2.1 System Introduction.- 2.1.1 Structured Light System.- 2.1.2 Omni-directional Vision System.- 2.2 Component Modeling.- 2.2.1 Convex Mirror.- 2.2.2 Camera Model.- 2.2.3 Projector Model.- 2.3 Pattern Coding Strategy.- 2.3.1 Introduction.- 2.3.2 Color-Encoded Light Pattern.- 2.3.3 Decoding the Light Pattern.- 2.4 Some Preliminaries.- 2.4.1 Notations and Definitions.- 2.4.2 Cross Ratio.- 2.4.3 Plane-based Homography.- 2.4.4 Fundamental Matrix.- Chapter 3 Static Calibration.- 3.1 Calibration Theory.- 3.2 Polygon-based Calibration.- 3.2.1 Design of the planar pattern.- 3.2.2 Solving the vanishing line.- 3.2.3 Solving the projection of a circle.- 3.2.4 Solving the projection of circular point.- 3.2.5 Algorithm.- 3.2.6 Discussion.- 3.3 Intersectant-Circle-based Calibration.- 3.3.1 Planar Pattern Design.- 3.3.2 Solution for the circular point.- 3.4 Concentric-Circle-based Calibration.- 3.4.1 Some Preliminaries.- 3.4.2 The polynomial eigenvalue problem.- 3.4.3 Orthogonality-based Algorithm.- 3.4.4 Experiments.- 3.4.4.1 Numerical Simulations.- 3.4.4.2 Real Image Experiment.- 3.5 Line-based Distortion Correction.- 3.5.1 The distortion model.- 3.5.2 The correction procedure.- 3.5.3 Examples.- 3.6 Summary.- Chapter 4 Homography-based Dynamic Calibration.- 4.1 Problem Statement.- 4.2 System Constraints.- 4.2.1 Two Propositions.- 4.3 Calibration Algorithm.- 4.3.1 Solution for the Scale Factor.- 4.3.2 Solutions for the Translation Vector.- 4.3.3 Solution for Rotation Matrix.- 4.3.4 Implementation Procedure.- 4.4 Error Analyses.- 4.4.1 Errors in the Homographic matrix.- 4.4.2 Errors in the translation vector.- 4.4.3 Errors in the rotation matrix.- 4.5 Experiments Study.- 4.5.1 Computer Simulation.- 4.5.2 Real Data Experiment.- 4.6 Summary.- Chapter 5 3D Reconstruction with Image-to-World Transformation.- 5.1 Introduction.- 5.2 Image-to-World Transformation matrix.- 5.3 Two-Known-Plane based method.- 5.3.1 Static Calibration.- 5.3.2 Determining the on-line Homography.- 5.3.3 Euclidean 3D Reconstruction.- 5.3.4 Configuration of the two scene planes.- 5.3.5 Computational Complexity Study.- 5.3.6 Reconstruction Examples.- 5.4 One-Known-Plane based method.- 5.4.1 Calibration Tasks.- 5.4.2 Generic Homography.- 5.4.3 Dynamic Calibration.- 5.4.4 Reconstruction Procedure.- 5.4.5. Reconstruction Examples.- 5.5 Summary.- Chapter 6 Catadioptric Vision System.- 6.1 Introduction.- 6.1.1 Wide Field-of-View System.- 6.1.2 Calibration of Omni-directional Vision System.- 6.1.3 Test Example.- 6.2 Panoramic Stereoscopic System.- 6.2.1 System Configuration.- 6.2.2 Co-axis Installation.- 6.2.3 System Model.- 6.2.4 Epipolar geometry and 3D reconstruction.- 6.2.5 Calibration Procedure.- 6.2.5.1 Initialization of the Parameters.- 6.2.5.2 Non-linear optimization.- 6.3 Parabolic Camera System.- 6.3.1 System Configuration.- 6.3.2 System Modeling.- 6.3.3 Calibration with Lifted-Fundamental-matrix.- 6.3.3.1 The lifted fundamental matrix.- 6.3.3.2 Calibration Procedure.- 6.3.3.3 Simplified Case.- 6.3.3.4 Discussion.- 6.3.4 Calibration Based on Homographic matrix.- 6.3.4.1 Plane-to-mirror Homography.- 6.3.4.2 Calibration Procedure.- 6.3.4.3 Calibration Test.- 6.3.5 Polynomial Eigenvalue Problem.- 6.3.5.1 Mirror-to-mirror Homography.- 6.3.5.2 Constraints and Solutions.- 6.3.5.3 Test Example.- 6.4 Hyperbolic Camera System.- 6.4.1 System Structure.- 6.4.2 Imaging Process and Back Projection.- 6.4.3 Polynomial Eigenvalue Problem.- 6.5 Summary.- Chapter 7 Conclusions and Future Expectation.- 7.1 Conclusions.- 7.2 Future Expectations.- References.
Chapter 1 Introduction.- 1.1 Vision Framework.- 1.2 Background.- 1.2.1 Calibrated Reconstruction.- 1.2.1.1 Static Calibration based methods.- 1.2.1.2 Dynamic Calibration based methods.- 1.2.1.3 Relative Pose Problem.- 1.2.2 Uncalibrated 3D reconstruction.- 1.2.2.1 Factorization-based method.- 1.2.2.2 Stratification-based method.- 1.2.2.3 Using Structured Light System.- 1.3 Scope.- 1.3.1 System Calibration.- 1.3.2 Plane-based Homography.- 1.3.3 Structured Light System.- 1.3.4 Omni-directional Vision System.- 1.4 Objectives.- 1.5 Book Structures.- Chapter 2 System Description.- 2.1 System Introduction.- 2.1.1 Structured Light System.- 2.1.2 Omni-directional Vision System.- 2.2 Component Modeling.- 2.2.1 Convex Mirror.- 2.2.2 Camera Model.- 2.2.3 Projector Model.- 2.3 Pattern Coding Strategy.- 2.3.1 Introduction.- 2.3.2 Color-Encoded Light Pattern.- 2.3.3 Decoding the Light Pattern.- 2.4 Some Preliminaries.- 2.4.1 Notations and Definitions.- 2.4.2 Cross Ratio.- 2.4.3 Plane-based Homography.- 2.4.4 Fundamental Matrix.- Chapter 3 Static Calibration.- 3.1 Calibration Theory.- 3.2 Polygon-based Calibration.- 3.2.1 Design of the planar pattern.- 3.2.2 Solving the vanishing line.- 3.2.3 Solving the projection of a circle.- 3.2.4 Solving the projection of circular point.- 3.2.5 Algorithm.- 3.2.6 Discussion.- 3.3 Intersectant-Circle-based Calibration.- 3.3.1 Planar Pattern Design.- 3.3.2 Solution for the circular point.- 3.4 Concentric-Circle-based Calibration.- 3.4.1 Some Preliminaries.- 3.4.2 The polynomial eigenvalue problem.- 3.4.3 Orthogonality-based Algorithm.- 3.4.4 Experiments.- 3.4.4.1 Numerical Simulations.- 3.4.4.2 Real Image Experiment.- 3.5 Line-based Distortion Correction.- 3.5.1 The distortion model.- 3.5.2 The correction procedure.- 3.5.3 Examples.- 3.6 Summary.- Chapter 4 Homography-based Dynamic Calibration.- 4.1 Problem Statement.- 4.2 System Constraints.- 4.2.1 Two Propositions.- 4.3 Calibration Algorithm.- 4.3.1 Solution for the Scale Factor.- 4.3.2 Solutions for the Translation Vector.- 4.3.3 Solution for Rotation Matrix.- 4.3.4 Implementation Procedure.- 4.4 Error Analyses.- 4.4.1 Errors in the Homographic matrix.- 4.4.2 Errors in the translation vector.- 4.4.3 Errors in the rotation matrix.- 4.5 Experiments Study.- 4.5.1 Computer Simulation.- 4.5.2 Real Data Experiment.- 4.6 Summary.- Chapter 5 3D Reconstruction with Image-to-World Transformation.- 5.1 Introduction.- 5.2 Image-to-World Transformation matrix.- 5.3 Two-Known-Plane based method.- 5.3.1 Static Calibration.- 5.3.2 Determining the on-line Homography.- 5.3.3 Euclidean 3D Reconstruction.- 5.3.4 Configuration of the two scene planes.- 5.3.5 Computational Complexity Study.- 5.3.6 Reconstruction Examples.- 5.4 One-Known-Plane based method.- 5.4.1 Calibration Tasks.- 5.4.2 Generic Homography.- 5.4.3 Dynamic Calibration.- 5.4.4 Reconstruction Procedure.- 5.4.5. Reconstruction Examples.- 5.5 Summary.- Chapter 6 Catadioptric Vision System.- 6.1 Introduction.- 6.1.1 Wide Field-of-View System.- 6.1.2 Calibration of Omni-directional Vision System.- 6.1.3 Test Example.- 6.2 Panoramic Stereoscopic System.- 6.2.1 System Configuration.- 6.2.2 Co-axis Installation.- 6.2.3 System Model.- 6.2.4 Epipolar geometry and 3D reconstruction.- 6.2.5 Calibration Procedure.- 6.2.5.1 Initialization of the Parameters.- 6.2.5.2 Non-linear optimization.- 6.3 Parabolic Camera System.- 6.3.1 System Configuration.- 6.3.2 System Modeling.- 6.3.3 Calibration with Lifted-Fundamental-matrix.- 6.3.3.1 The lifted fundamental matrix.- 6.3.3.2 Calibration Procedure.- 6.3.3.3 Simplified Case.- 6.3.3.4 Discussion.- 6.3.4 Calibration Based on Homographic matrix.- 6.3.4.1 Plane-to-mirror Homography.- 6.3.4.2 Calibration Procedure.- 6.3.4.3 Calibration Test.- 6.3.5 Polynomial Eigenvalue Problem.- 6.3.5.1 Mirror-to-mirror Homography.- 6.3.5.2 Constraints and Solutions.- 6.3.5.3 Test Example.- 6.4 Hyperbolic Camera System.- 6.4.1 System Structure.- 6.4.2 Imaging Process and Back Projection.- 6.4.3 Polynomial Eigenvalue Problem.- 6.5 Summary.- Chapter 7 Conclusions and Future Expectation.- 7.1 Conclusions.- 7.2 Future Expectations.- References.
From the reviews: "This is a small book ... providing a good literature review and discussing the work of the authors on some problems in active vision systems and catadioptric systems. ... the literature survey provided by the book on different problems is a valuable one, and also the example methods for different problems related to reconstruction using active and catadioptric vision systems give a good outlook into the field. It can be worth collecting for practitioners as well as for students studying active or catadioptric vision systems." (M. Zeeshan Zia, IAPR Newsletter, Vol. 34 (3), July-August, 2012)