Bela von Szeged Nagy
Spektraldarstellung Linearer Transformationen des Hilbertschen Raumes
Bela von Szeged Nagy
Spektraldarstellung Linearer Transformationen des Hilbertschen Raumes
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Andere Kunden interessierten sich auch für
- T. BonnesenTheorie der Konvexen Körper54,99 €
- Christian B. LangMathematische Methoden in der Physik54,99 €
- Karl-Heinz GoldhornModerne mathematische Methoden der Physik49,99 €
- H. BackhausAkustik84,99 €
- J. NielsenVorlesungen über elementare Mechanik69,99 €
- K. MagnusKreisel54,99 €
- Erhard ScheibeDie Reduktion physikalischer Theorien79,99 €
-
-
-
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Ergebnisse der Mathematik und Ihrer Grenzgebiete .5
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-98354-2
- 1942.
- Seitenzahl: 92
- Erscheinungstermin: 1. Januar 1942
- Deutsch
- Abmessung: 235mm x 155mm x 6mm
- Gewicht: 157g
- ISBN-13: 9783642983542
- ISBN-10: 3642983545
- Artikelnr.: 39155358
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Ergebnisse der Mathematik und Ihrer Grenzgebiete .5
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-98354-2
- 1942.
- Seitenzahl: 92
- Erscheinungstermin: 1. Januar 1942
- Deutsch
- Abmessung: 235mm x 155mm x 6mm
- Gewicht: 157g
- ISBN-13: 9783642983542
- ISBN-10: 3642983545
- Artikelnr.: 39155358
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
I. Grundbegriffe.- 1. Axiomatische Definition des Raumes R.- 2. Einige Realisierungen des abstrakten Raumes R. Kartesisches Produkt von Räumen.- 3. Konvexe Mengen, Linearmannigfaltigkeiten und Unterräume.- 4. Lineare Operationen. Schwache Konvergenz.- 5. Beschränkte lineare Transformationen.- II. Beschränkte selbstadjungierte und normale Transformationen.- 1. Selbstadjungierte Transformationen.- 2. Projektionen.- 3. Normale und unitäre Transformationen.- III. Integrale beschränkter Funktionen in bezug auf eine Spektralschar.- 1. Spektralscharen.- 2. Integral einer Treppenfunktion.- 3. Integral stetiger oder zu einer BAiRESchen Klasse gehöriger Funktionen.- 4. Integrale in bezug auf eine mehrparametrige Spektralschar.- IV. Kanonische Spektraldarstellung beschränkter selbstadj ungierter und normaler Transformationen.- 1. Spektraldarstellung beschränkter selbstadjungierter Transformationen.- 2. Spektraldarstellung beschränkter normaler Transformationen.- V. Verallgemeinerung des Begriffs einer Transformation Nichtbeschränkte selbstadj ungierte und normale Transformationen.- 1. Allgemeine Betrachtungen.- 2. Über das Produkt T*T.- 3. Vertauschbarkeit, kartesisches Produkt und Reduktion von Transformationen.- 4. Selbstadjungierte und normale Transformationen.- VI. Symmetrische Transformationen.- 1. Definition und einige einfache Eigenschaften.- 2. Halbbeschränkte symmetrische Transformationen.- 3. Cayleysche Transformierte, Fortsetzung einer symmetrischen Transformation.- 4. Maximale symmetrische Transformationen.- 5. Reelle Transformationen.- VII. Integrale allgemeiner Funktionen in bezug auf eine Spektralschar.- 1. Beschränkte Funktionen.- 2. Nichtbeschränkte Funktionen.- 3. Erweiterte Spektralschar Projektionsmaß.- VIII. Kanonische Spektraldarstellungallgemeiner selbstadjungierter und normaler Transformationen.- 1. Erster Beweis.- 2. Anderer Beweis.- 3. Halbbeschränkte selbstadjungierte Transformationen Faktorzerlegung allgemeiner Transformationen.- IX. Über das Spektrum einer Transformation.- 1. Eigenwerte, Eigenelemente.- 2. Vollstetige normale Transformationen.- 3. Verhalten der Spektralschar beim Grenzübergang Störungstheorie.- 4. Unitäre Äquivalenz.- X. Funktionen selbstadjungierter oder normaler Transformationen.- 1. Begriff,der Funktion einer oder mehrerer Transformationen.- 2. Bedingungen dafür, daß eine Transformation Funktion gegebener Transformationen sei.- 3. Simultane Spektraldarstellung eines ABELschen Systems von selbstadjungierten oder normalen Transformationen.- 4. Zweiter Beweis.- XI. Spektraldarstellung von Gruppen und Halbgruppen linearer Transformationen.- 1. Gruppen von unitären Transformationen.- 2. Halbgruppen selbstadjungierter Transformationen.- 3. Halbgruppen normaler Transformationen.- Zeichenregister.
I. Grundbegriffe.- 1. Axiomatische Definition des Raumes R.- 2. Einige Realisierungen des abstrakten Raumes R. Kartesisches Produkt von Räumen.- 3. Konvexe Mengen, Linearmannigfaltigkeiten und Unterräume.- 4. Lineare Operationen. Schwache Konvergenz.- 5. Beschränkte lineare Transformationen.- II. Beschränkte selbstadjungierte und normale Transformationen.- 1. Selbstadjungierte Transformationen.- 2. Projektionen.- 3. Normale und unitäre Transformationen.- III. Integrale beschränkter Funktionen in bezug auf eine Spektralschar.- 1. Spektralscharen.- 2. Integral einer Treppenfunktion.- 3. Integral stetiger oder zu einer BAiRESchen Klasse gehöriger Funktionen.- 4. Integrale in bezug auf eine mehrparametrige Spektralschar.- IV. Kanonische Spektraldarstellung beschränkter selbstadj ungierter und normaler Transformationen.- 1. Spektraldarstellung beschränkter selbstadjungierter Transformationen.- 2. Spektraldarstellung beschränkter normaler Transformationen.- V. Verallgemeinerung des Begriffs einer Transformation Nichtbeschränkte selbstadj ungierte und normale Transformationen.- 1. Allgemeine Betrachtungen.- 2. Über das Produkt T*T.- 3. Vertauschbarkeit, kartesisches Produkt und Reduktion von Transformationen.- 4. Selbstadjungierte und normale Transformationen.- VI. Symmetrische Transformationen.- 1. Definition und einige einfache Eigenschaften.- 2. Halbbeschränkte symmetrische Transformationen.- 3. Cayleysche Transformierte, Fortsetzung einer symmetrischen Transformation.- 4. Maximale symmetrische Transformationen.- 5. Reelle Transformationen.- VII. Integrale allgemeiner Funktionen in bezug auf eine Spektralschar.- 1. Beschränkte Funktionen.- 2. Nichtbeschränkte Funktionen.- 3. Erweiterte Spektralschar Projektionsmaß.- VIII. Kanonische Spektraldarstellungallgemeiner selbstadjungierter und normaler Transformationen.- 1. Erster Beweis.- 2. Anderer Beweis.- 3. Halbbeschränkte selbstadjungierte Transformationen Faktorzerlegung allgemeiner Transformationen.- IX. Über das Spektrum einer Transformation.- 1. Eigenwerte, Eigenelemente.- 2. Vollstetige normale Transformationen.- 3. Verhalten der Spektralschar beim Grenzübergang Störungstheorie.- 4. Unitäre Äquivalenz.- X. Funktionen selbstadjungierter oder normaler Transformationen.- 1. Begriff,der Funktion einer oder mehrerer Transformationen.- 2. Bedingungen dafür, daß eine Transformation Funktion gegebener Transformationen sei.- 3. Simultane Spektraldarstellung eines ABELschen Systems von selbstadjungierten oder normalen Transformationen.- 4. Zweiter Beweis.- XI. Spektraldarstellung von Gruppen und Halbgruppen linearer Transformationen.- 1. Gruppen von unitären Transformationen.- 2. Halbgruppen selbstadjungierter Transformationen.- 3. Halbgruppen normaler Transformationen.- Zeichenregister.