David R. Martinez, Bruke Kifle
Artificial Intelligence
A Systems Approach from Architecture Principles to Deployment
David R. Martinez, Bruke Kifle
Artificial Intelligence
A Systems Approach from Architecture Principles to Deployment
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
"Addresses artificial intelligence (AI) from a system engineering approach"--
Andere Kunden interessierten sich auch für
- Julian TogeliusArtificial General Intelligence12,99 €
- Ronald J. BrachmanMachines like Us16,99 €
- Alan F. BlackwellMoral Codes29,99 €
- Mykel J. Kochenderfer (Stanford University)Algorithms for Optimization103,99 €
- Mehryar Mohri (New York University)Foundations of Machine Learning92,99 €
- Marjorie McshaneAgents in the Long Game of AI60,99 €
- Tony VealeYour Wit Is My Command: Building Ais with a Sense of Humor30,99 €
-
-
-
"Addresses artificial intelligence (AI) from a system engineering approach"--
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: MIT Press Ltd
- Seitenzahl: 576
- Erscheinungstermin: 11. Juni 2024
- Englisch
- Abmessung: 231mm x 184mm x 40mm
- Gewicht: 1226g
- ISBN-13: 9780262048989
- ISBN-10: 0262048981
- Artikelnr.: 69927044
- Verlag: MIT Press Ltd
- Seitenzahl: 576
- Erscheinungstermin: 11. Juni 2024
- Englisch
- Abmessung: 231mm x 184mm x 40mm
- Gewicht: 1226g
- ISBN-13: 9780262048989
- ISBN-10: 0262048981
- Artikelnr.: 69927044
David R. Martinez is a laboratory fellow at the MIT Lincoln Laboratory and the lead instructor for MIT’s “AI Strategies and Roadmap: Systems Engineering Approach to AI Development and Deployment” and “AI and ML: Leading Business Growth” courses. Bruke Mesfin Kifle is management consultant and former AI product manager at Microsoft Turing. He co-instructs MIT’s "AI Strategies and Roadmap " course.
Table of Contents
Preface 3
Acknowledgements 6
1 Overview 17
Part I AI System Architecture 49
2 Fundamentals of Systems Engineering 50
3 Data Conditioning 86
4 Machine Learning 127
5 Modern Computing 181
6 Human-Machine Teaming 258
7 Robust AI Systems 297
8 Responsible AI 343
Part II Strategic Principles 375
9 AI Strategy and Roadmap 376
10 AI Deployment Guidelines 427
11 MLOps: Transitioning from Development into Deployment 473
12 Fostering an Innovative Team Environment 518
13 Communicating Effectively 574
14 Use-Case Example #1: Misty Companion Robot as Alzheimer’s Application
605
15 Use-Case Example #2: Bose AI-Powered Cycling Coach and Warning System
614
16 Use-Case Example #3: Meal Evaluation & Attainment Logistics System
(MEALS) 622
17 Use-Case Example #4: Managing Energy for Smart Homes (MESH) 632
18 Use-Case Example #5: AquaAI—An AI-Powered Modernized Marine Maintenance
System 641
Appendices 649
Glossary 677
Index 680
Preface 3
Acknowledgements 6
1 Overview 17
Part I AI System Architecture 49
2 Fundamentals of Systems Engineering 50
3 Data Conditioning 86
4 Machine Learning 127
5 Modern Computing 181
6 Human-Machine Teaming 258
7 Robust AI Systems 297
8 Responsible AI 343
Part II Strategic Principles 375
9 AI Strategy and Roadmap 376
10 AI Deployment Guidelines 427
11 MLOps: Transitioning from Development into Deployment 473
12 Fostering an Innovative Team Environment 518
13 Communicating Effectively 574
14 Use-Case Example #1: Misty Companion Robot as Alzheimer’s Application
605
15 Use-Case Example #2: Bose AI-Powered Cycling Coach and Warning System
614
16 Use-Case Example #3: Meal Evaluation & Attainment Logistics System
(MEALS) 622
17 Use-Case Example #4: Managing Energy for Smart Homes (MESH) 632
18 Use-Case Example #5: AquaAI—An AI-Powered Modernized Marine Maintenance
System 641
Appendices 649
Glossary 677
Index 680
Table of Contents
Preface 3
Acknowledgements 6
1 Overview 17
Part I AI System Architecture 49
2 Fundamentals of Systems Engineering 50
3 Data Conditioning 86
4 Machine Learning 127
5 Modern Computing 181
6 Human-Machine Teaming 258
7 Robust AI Systems 297
8 Responsible AI 343
Part II Strategic Principles 375
9 AI Strategy and Roadmap 376
10 AI Deployment Guidelines 427
11 MLOps: Transitioning from Development into Deployment 473
12 Fostering an Innovative Team Environment 518
13 Communicating Effectively 574
14 Use-Case Example #1: Misty Companion Robot as Alzheimer’s Application
605
15 Use-Case Example #2: Bose AI-Powered Cycling Coach and Warning System
614
16 Use-Case Example #3: Meal Evaluation & Attainment Logistics System
(MEALS) 622
17 Use-Case Example #4: Managing Energy for Smart Homes (MESH) 632
18 Use-Case Example #5: AquaAI—An AI-Powered Modernized Marine Maintenance
System 641
Appendices 649
Glossary 677
Index 680
Preface 3
Acknowledgements 6
1 Overview 17
Part I AI System Architecture 49
2 Fundamentals of Systems Engineering 50
3 Data Conditioning 86
4 Machine Learning 127
5 Modern Computing 181
6 Human-Machine Teaming 258
7 Robust AI Systems 297
8 Responsible AI 343
Part II Strategic Principles 375
9 AI Strategy and Roadmap 376
10 AI Deployment Guidelines 427
11 MLOps: Transitioning from Development into Deployment 473
12 Fostering an Innovative Team Environment 518
13 Communicating Effectively 574
14 Use-Case Example #1: Misty Companion Robot as Alzheimer’s Application
605
15 Use-Case Example #2: Bose AI-Powered Cycling Coach and Warning System
614
16 Use-Case Example #3: Meal Evaluation & Attainment Logistics System
(MEALS) 622
17 Use-Case Example #4: Managing Energy for Smart Homes (MESH) 632
18 Use-Case Example #5: AquaAI—An AI-Powered Modernized Marine Maintenance
System 641
Appendices 649
Glossary 677
Index 680