- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This text focuses on the physics of fluid transport in micro- and nanofabricated systems.
Andere Kunden interessierten sich auch für
- Nanoscale Self-Assembly54,99 €
- Megh R. GoyalManagement of Drip/Trickle or Micro Irrigation228,99 €
- Zhenhao ZhangNanoscale investigation of potential distribution in operating Cu(In,Ga)Se2 thin-film solar cells42,00 €
- John K. VennardElementary Fluid Mechanics40,99 €
- John K. VennardElementary Fluid Mechanics50,99 €
- Sustainable Micro Irrigation Design Systems for Agricultural Crops211,99 €
- Fertigation Technologies for Micro Irrigated Crops239,99 €
-
-
-
This text focuses on the physics of fluid transport in micro- and nanofabricated systems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 536
- Erscheinungstermin: 1. Juli 2010
- Englisch
- Abmessung: 260mm x 183mm x 33mm
- Gewicht: 1192g
- ISBN-13: 9780521119030
- ISBN-10: 0521119030
- Artikelnr.: 29930309
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 536
- Erscheinungstermin: 1. Juli 2010
- Englisch
- Abmessung: 260mm x 183mm x 33mm
- Gewicht: 1192g
- ISBN-13: 9780521119030
- ISBN-10: 0521119030
- Artikelnr.: 29930309
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Brian J. Kirby currently directs the Micro/Nanofluidics Laboratory in the Sibley School of Mechanical and Aerospace Engineering at Cornell University. He joined the school in August 2004. Previous to that, he was a Senior Member of the Technical Staff in the Microfluidics Department at Sandia National Laboratories in Livermore, California, where he worked from 2001 to 2004 on microfluidic systems, with applications primarily to counterbioterrorism. Professor Kirby received a 2002 R&D Top 100 Invention Award for work on microvalves for high-pressure fluid control, a 2004 JD Watson Investigator Award for microdevices for protein production and analysis, and a 2006 Presidential Early Career Award for Scientists and Engineers (PECASE) for nanoscale electrokinetics and bioagent detection. He teaches both macroscale and microscale fluid mechanics, and received the 2008 Mr and Mrs Robert F. Tucker Excellence in Teaching Award at Cornell University.
1. Kinematics, conservation equations, and boundary conditions for incompressible flow
2. Unidirectional flow
3. Hydraulic circuit analysis
4. Passive scalar transport: dispersion, patterning, and mixing
5. Electrostatics and electrodynamics
6. Electroosmosis
7. Potential fluid flow
8. Stikes flow
9. The diffuse structure of the electrical double layer
10. Zeta potential in microchannels
11. Species and charge transport
12. Microchip chemical separations
13. Particle electrophoresis
14. DNA transport and analysis
15. Nanofluidics: fluid and current flow in molecular-scale and thick-double-layer systems
16. AC electrokinetics and the dynamics of diffuse charge
17. Particle and droplet actuation: dielectrophoresis, magnetophoresis, and digital microfluidics
Appendices: A. Units and fundamental constants
B. Properties of electrolyte solutions
C. Coordinate systems and vector calculus
D. Governing equation reference
E. Nondimensionalization and characteristic parameters
F. Multipolar solutions to the Laplace and Stokes equations
G. Complex functions
H. Interaction potentials: atomistic modeling of solvents and solutes.
2. Unidirectional flow
3. Hydraulic circuit analysis
4. Passive scalar transport: dispersion, patterning, and mixing
5. Electrostatics and electrodynamics
6. Electroosmosis
7. Potential fluid flow
8. Stikes flow
9. The diffuse structure of the electrical double layer
10. Zeta potential in microchannels
11. Species and charge transport
12. Microchip chemical separations
13. Particle electrophoresis
14. DNA transport and analysis
15. Nanofluidics: fluid and current flow in molecular-scale and thick-double-layer systems
16. AC electrokinetics and the dynamics of diffuse charge
17. Particle and droplet actuation: dielectrophoresis, magnetophoresis, and digital microfluidics
Appendices: A. Units and fundamental constants
B. Properties of electrolyte solutions
C. Coordinate systems and vector calculus
D. Governing equation reference
E. Nondimensionalization and characteristic parameters
F. Multipolar solutions to the Laplace and Stokes equations
G. Complex functions
H. Interaction potentials: atomistic modeling of solvents and solutes.
1. Kinematics, conservation equations, and boundary conditions for incompressible flow
2. Unidirectional flow
3. Hydraulic circuit analysis
4. Passive scalar transport: dispersion, patterning, and mixing
5. Electrostatics and electrodynamics
6. Electroosmosis
7. Potential fluid flow
8. Stikes flow
9. The diffuse structure of the electrical double layer
10. Zeta potential in microchannels
11. Species and charge transport
12. Microchip chemical separations
13. Particle electrophoresis
14. DNA transport and analysis
15. Nanofluidics: fluid and current flow in molecular-scale and thick-double-layer systems
16. AC electrokinetics and the dynamics of diffuse charge
17. Particle and droplet actuation: dielectrophoresis, magnetophoresis, and digital microfluidics
Appendices: A. Units and fundamental constants
B. Properties of electrolyte solutions
C. Coordinate systems and vector calculus
D. Governing equation reference
E. Nondimensionalization and characteristic parameters
F. Multipolar solutions to the Laplace and Stokes equations
G. Complex functions
H. Interaction potentials: atomistic modeling of solvents and solutes.
2. Unidirectional flow
3. Hydraulic circuit analysis
4. Passive scalar transport: dispersion, patterning, and mixing
5. Electrostatics and electrodynamics
6. Electroosmosis
7. Potential fluid flow
8. Stikes flow
9. The diffuse structure of the electrical double layer
10. Zeta potential in microchannels
11. Species and charge transport
12. Microchip chemical separations
13. Particle electrophoresis
14. DNA transport and analysis
15. Nanofluidics: fluid and current flow in molecular-scale and thick-double-layer systems
16. AC electrokinetics and the dynamics of diffuse charge
17. Particle and droplet actuation: dielectrophoresis, magnetophoresis, and digital microfluidics
Appendices: A. Units and fundamental constants
B. Properties of electrolyte solutions
C. Coordinate systems and vector calculus
D. Governing equation reference
E. Nondimensionalization and characteristic parameters
F. Multipolar solutions to the Laplace and Stokes equations
G. Complex functions
H. Interaction potentials: atomistic modeling of solvents and solutes.