19,99 €
inkl. MwSt.
Versandfertig in 1-2 Wochen
10 °P sammeln
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher…mehr
Andere Kunden interessierten sich auch für
- Yunzhi ZouSingle Variable Calculus50,99 €
- Pietro-Luciano BuonoAdvanced Calculus44,95 €
- Nicola GigliMeasure Theory in Non-Smooth Spaces108,95 €
- Thomas A. SeveriniElements of Distribution Theory55,99 €
- Large Scale Inverse Problems89,99 €
- Pietro G. FréGroups and Manifolds96,98 €
- Michael KnorrenschildMathematik für Ingenieure 129,99 €
-
-
-
The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher dimensions. This is a justified and practical approach, it helps the reader to become familiar with the subject. A moderate number of exercises are added.
It is suitable for a one-semester course at the advanced undergraduate or beginning graduate level or for self-study.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
It is suitable for a one-semester course at the advanced undergraduate or beginning graduate level or for self-study.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- De Gruyter Textbook
- Verlag: De Gruyter
- Seitenzahl: 120
- Erscheinungstermin: 15. März 2013
- Englisch
- Abmessung: 246mm x 175mm x 14mm
- Gewicht: 357g
- ISBN-13: 9783110295917
- ISBN-10: 3110295911
- Artikelnr.: 37057564
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- De Gruyter Textbook
- Verlag: De Gruyter
- Seitenzahl: 120
- Erscheinungstermin: 15. März 2013
- Englisch
- Abmessung: 246mm x 175mm x 14mm
- Gewicht: 357g
- ISBN-13: 9783110295917
- ISBN-10: 3110295911
- Artikelnr.: 37057564
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Gerrit van Dijk, Leiden University, The Netherlands.
Preface 2
1 Definition and first properties of distributions 7
1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10
2 Differentiating distributions 13
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The distributions x-1+ ( 6= 0,-1,-2, . . . )* . . . . . . . . . . 16
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Green's formula and harmonic functions . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Multiplication and convergence of distributions 27
3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Distributions with compact support 31
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31
4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32
4.3 Taylor's formula for Rn . . . . . . . . . . . . . . . . . . . . . 33
4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34
5 Convolution of distributions 36
5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36
5.2 Convolution product of distributions . . . . . . . . . . . . . . 38
5.3 Associativity of the convolution product . . . . . . . . . . . . 44
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45
5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50
5.8 Volterra integral equations of the second kind . . . . . . . . . 52
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 The Fourier transform 57
6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57
6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Plancherel's theorem . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62
6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63
6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65
6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66
6.8 Fourier transform of a tempered distribution . . . . . . . . . 67
6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73
6.12 The heat or diffusion equation in one dimension . . . . . . . . 75
7 The Laplace transform 79
7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79
7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80
7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81
7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84
8 Summable distributions* 87
8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87
8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88
8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89
8.4 Canonical extension of a summable distribution . . . . . . . . 91
8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93
9 Appendix 96
9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96
9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103
Bibliography 108
Index 109
1 Definition and first properties of distributions 7
1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10
2 Differentiating distributions 13
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The distributions x-1+ ( 6= 0,-1,-2, . . . )* . . . . . . . . . . 16
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Green's formula and harmonic functions . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Multiplication and convergence of distributions 27
3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Distributions with compact support 31
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31
4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32
4.3 Taylor's formula for Rn . . . . . . . . . . . . . . . . . . . . . 33
4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34
5 Convolution of distributions 36
5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36
5.2 Convolution product of distributions . . . . . . . . . . . . . . 38
5.3 Associativity of the convolution product . . . . . . . . . . . . 44
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45
5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50
5.8 Volterra integral equations of the second kind . . . . . . . . . 52
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 The Fourier transform 57
6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57
6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Plancherel's theorem . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62
6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63
6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65
6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66
6.8 Fourier transform of a tempered distribution . . . . . . . . . 67
6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73
6.12 The heat or diffusion equation in one dimension . . . . . . . . 75
7 The Laplace transform 79
7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79
7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80
7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81
7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84
8 Summable distributions* 87
8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87
8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88
8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89
8.4 Canonical extension of a summable distribution . . . . . . . . 91
8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93
9 Appendix 96
9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96
9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103
Bibliography 108
Index 109
Preface 2
1 Definition and first properties of distributions 7
1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10
2 Differentiating distributions 13
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The distributions x-1+ ( 6= 0,-1,-2, . . . )* . . . . . . . . . . 16
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Green's formula and harmonic functions . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Multiplication and convergence of distributions 27
3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Distributions with compact support 31
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31
4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32
4.3 Taylor's formula for Rn . . . . . . . . . . . . . . . . . . . . . 33
4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34
5 Convolution of distributions 36
5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36
5.2 Convolution product of distributions . . . . . . . . . . . . . . 38
5.3 Associativity of the convolution product . . . . . . . . . . . . 44
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45
5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50
5.8 Volterra integral equations of the second kind . . . . . . . . . 52
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 The Fourier transform 57
6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57
6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Plancherel's theorem . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62
6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63
6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65
6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66
6.8 Fourier transform of a tempered distribution . . . . . . . . . 67
6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73
6.12 The heat or diffusion equation in one dimension . . . . . . . . 75
7 The Laplace transform 79
7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79
7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80
7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81
7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84
8 Summable distributions* 87
8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87
8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88
8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89
8.4 Canonical extension of a summable distribution . . . . . . . . 91
8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93
9 Appendix 96
9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96
9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103
Bibliography 108
Index 109
1 Definition and first properties of distributions 7
1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10
2 Differentiating distributions 13
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The distributions x-1+ ( 6= 0,-1,-2, . . . )* . . . . . . . . . . 16
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Green's formula and harmonic functions . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Multiplication and convergence of distributions 27
3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Distributions with compact support 31
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31
4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32
4.3 Taylor's formula for Rn . . . . . . . . . . . . . . . . . . . . . 33
4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34
5 Convolution of distributions 36
5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36
5.2 Convolution product of distributions . . . . . . . . . . . . . . 38
5.3 Associativity of the convolution product . . . . . . . . . . . . 44
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45
5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50
5.8 Volterra integral equations of the second kind . . . . . . . . . 52
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 The Fourier transform 57
6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57
6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Plancherel's theorem . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62
6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63
6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65
6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66
6.8 Fourier transform of a tempered distribution . . . . . . . . . 67
6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73
6.12 The heat or diffusion equation in one dimension . . . . . . . . 75
7 The Laplace transform 79
7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79
7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80
7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81
7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84
8 Summable distributions* 87
8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87
8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88
8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89
8.4 Canonical extension of a summable distribution . . . . . . . . 91
8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93
9 Appendix 96
9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96
9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103
Bibliography 108
Index 109