During the last decade much of the attention given to crashworthiness and crash energy management has centered on composite structures. Crashworthiness of Composite Thin-Walled Structural Components provides an in-depth, illustrated survey of both the technology and applications of this growing field. The authors introduce the concepts, terms and definitions of crashworthiness, discuss the failure mechanisms and energy absorption capability of composites in various geometries, and provides a full source of references.
During the last decade much of the attention given to crashworthiness and crash energy management has centered on composite structures. Crashworthiness of Composite Thin-Walled Structural Components provides an in-depth, illustrated survey of both the technology and applications of this growing field. The authors introduce the concepts, terms and definitions of crashworthiness, discuss the failure mechanisms and energy absorption capability of composites in various geometries, and provides a full source of references.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Mamalis, A.G.; Manolakos, D. E.; Demosthenous, G. A.; Ioannidis, M. B.
Inhaltsangabe
Preface Introduction Vehicle Crashworthiness 2.1 Aspects of Crashworthiness 2.2 Use of Composite Materials in Crashworthiness Applications Failure Mechanisms of Composites 3.1 Notation 3.2 Failure Modes 3.3 Failure under Several Loading Conditions 3.4 Material Testing 3.5 Failure Criteria 3.6 Numerical Simulation Energy Absorption Capability of Thin-Walled Composite Structural Components 4.1 Definition 4.2 Factors Affecting the Energy Absorption Capability 4.3 Failure Mechanisms/Mechanical Response 4.4 Predictive Techniques 4.5 Quantitative Data Circular Tubes 5.1 Notation 5.2 General 5.3 Axial Collapse: Static and Dynamic 5.4 Bending Square-Rectangular Tubes 6.1 Notation 6.2 General 6.3 Axial Collapse: Static and Dynamic 6.4 Bending Circular Frusta 7.1 Notation 7.2 General 7.3 Axial Collapse: Static and Dynamic Square Frusta 8.1 Notation 8.2 General 8.3 Axial Collapse: Static an Dynamic Automotive Sections 9.1 Notation 9.2 General 9.3 Axial Collapse: Static and Dynamic 9.4 Bending Classification of Macro- and Microfailure Modes and Quantitative Data 10.1 Common Defects in the Processing of Composite Materials 10.2 Common Defects in Loaded Composite Thin-Walled Structures References Subject Index Author Index
Preface Introduction Vehicle Crashworthiness 2.1 Aspects of Crashworthiness 2.2 Use of Composite Materials in Crashworthiness Applications Failure Mechanisms of Composites 3.1 Notation 3.2 Failure Modes 3.3 Failure under Several Loading Conditions 3.4 Material Testing 3.5 Failure Criteria 3.6 Numerical Simulation Energy Absorption Capability of Thin-Walled Composite Structural Components 4.1 Definition 4.2 Factors Affecting the Energy Absorption Capability 4.3 Failure Mechanisms/Mechanical Response 4.4 Predictive Techniques 4.5 Quantitative Data Circular Tubes 5.1 Notation 5.2 General 5.3 Axial Collapse: Static and Dynamic 5.4 Bending Square-Rectangular Tubes 6.1 Notation 6.2 General 6.3 Axial Collapse: Static and Dynamic 6.4 Bending Circular Frusta 7.1 Notation 7.2 General 7.3 Axial Collapse: Static and Dynamic Square Frusta 8.1 Notation 8.2 General 8.3 Axial Collapse: Static an Dynamic Automotive Sections 9.1 Notation 9.2 General 9.3 Axial Collapse: Static and Dynamic 9.4 Bending Classification of Macro- and Microfailure Modes and Quantitative Data 10.1 Common Defects in the Processing of Composite Materials 10.2 Common Defects in Loaded Composite Thin-Walled Structures References Subject Index Author Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497