David A. B. Miller received the B.Sc. degree from St Andrews University, and, in 1979, the Ph.D. degree from Heriot-Watt University, both in Physics. He was with Bell Laboratories from 1981 to 1996, as a department head from 1987, latterly of the Advanced Photonics Research Department. He is currently the W. M. Keck Professor of Electrical Engineering, the Director of the Solid State and Photonics Laboratory, and a Co-Director of the Stanford Photonics Research Center at Stanford University, Stanford, California, USA. His research interests include physics and devices in nanophotonics, nanometallics, and quantum-well optoelectronics, and fundamentals and applications of optics in information sensing, switching, and processing. He has published more than 200 scientific papers, holds 62 patents, is a Fellow of OSA, IEEE, APS, and the Royal Societies of Edinburgh and London, holds honorary degrees from the Vrije Universiteit Brussel and Heriot-Watt University, and has received numerous awards.
Inhaltsangabe
How to use this book 1. Introduction 2. Waves and quantum mechanics - Schrödinger's equation 3. The time-dependent Schrödinger equation 4. Functions and operators 5. Operators and quantum mechanics 6. Approximation methods in quantum mechanics 7. Time-dependent perturbation theory 8. Quantum mechanics in crystalline materials 9. Angular momentum 10. The hydrogen atom 11. Methods for one-dimensional problems 12. Spin 13. Identical particles 14. The density matrix 15. Harmonic oscillators and photons 16. Fermion operators 17. Interaction of different kinds of particles 18. Quantum information 19. Interpretation of quantum mechanics Appendices: A. Background mathematics B. Background physics C. Vector calculus D. Maxwell's equations and electromagnetism E. Perturbing Hamiltonian for optical absorption F. Early history of quantum mechanics G. Some useful mathematical formulae H. Greek alphabet I. Fundamental constants Bibliography Memorization list.
How to use this book 1. Introduction 2. Waves and quantum mechanics - Schrödinger's equation 3. The time-dependent Schrödinger equation 4. Functions and operators 5. Operators and quantum mechanics 6. Approximation methods in quantum mechanics 7. Time-dependent perturbation theory 8. Quantum mechanics in crystalline materials 9. Angular momentum 10. The hydrogen atom 11. Methods for one-dimensional problems 12. Spin 13. Identical particles 14. The density matrix 15. Harmonic oscillators and photons 16. Fermion operators 17. Interaction of different kinds of particles 18. Quantum information 19. Interpretation of quantum mechanics Appendices: A. Background mathematics B. Background physics C. Vector calculus D. Maxwell's equations and electromagnetism E. Perturbing Hamiltonian for optical absorption F. Early history of quantum mechanics G. Some useful mathematical formulae H. Greek alphabet I. Fundamental constants Bibliography Memorization list.
Rezensionen
'This is an excellent introductory-level textbook on quantum mechanics for physicists and engineers. ... The author is a leading expert in quantum devices and he writes the text with remarkable clarity and authority. It is highly recommended.' Shun-Lien Chuang, University of Illinois
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826